
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Method for Reducing Simulation Timing
Deviation in QEMU-Based Virtual ECU

Anna Yang
SDV Center

DRIMAES, Korea Aerospace Univ.
Seoul, South Korea

metamon@drimaes.com

Jin Yong Kim
SDV Center
DRIMAES

Seoul, South Korea
red.kim@drimaes.com

Woo Hyun Seol
SDV Center
DRIMAES

Seoul, South Korea
truman@drimaes.com

Woo Jin Han
SDV Center
DRIMAES

Seoul, South Korea
wjhan@drimaes.com

Hyng Rae Kim
School of Electronics and Engineering

Kyungpook National University
Daegu, South Korea
hrsin95@knu.ac.kr

Jeonghun Cho
School of Electronics and Engineering

Kyungpook National University
Daegu, South Korea

jcho@knu.ac.kr

Abstract— As support for a wider range of functions and
services of vehicles, such as driver assistance systems,
autonomous driving, and OTA services, has increased in recent
years, the complexity of software embedded in vehicles has
become increasingly complex. These changes are driving
demand for simulation technologies that can help reduce
development and validation time while ensuring vehicle safety
and reliability. Among them, electronic control unit
virtualization technology is steadily being researched and
commercialized by many companies because it can consider the
characteristics of ECUs from the development and validation
stages of in-vehicle embedded software. In this paper, we discuss
the virtualization method of STM32F407ZGT using QEMU as
part of ECU virtualization technology. Furthermore, we
propose a technique to reduce the simulation error by
measuring the running time of the physical ECU and adjusting
the unit time in the AUTOSAR OS on the virtual ECU. This is
to reduce the simulation error caused by the dependence on the
host computer environment and the generation of overhead in
the case of highly computational in-vehicle embedded software,
which have been pointed out as problems in ECU virtualization
using QEMU. The experimental results of the proposed
technique show that the simulation timing error rate of the
virtual ECU compared to the physical ECU is reduced from an
average of 2.40% to 0.02%. This shows that, just by reflecting
the operational characteristics of the physical ECU in the
QEMU-based virtual ECU, it is possible to improve the
precision by reducing the timing error of the simulation.

Keywords—virtual ECU, Simulation, QEMU, AUTOSAR,
Operation Accuracy

I. INTRODUCTION
Recently, the automotive industry has witnessed

significant advancements, with the integration of technologies
such as ADAS(Advanced Driver Assist System), AD
(Autonomous Driving), RDE(Real Driving Emission), and
driver convenience systems into vehicles. These
advancements have led to a significant increase in the number
of E/E(Electrical/Electronic) systems integrated into vehicles,
thereby escalating the overall system complexity. According
to a survey on the productivity improvement of development
compared to system complexity for in-vehicle embedded
systems, it was found that the productivity of vehicle
development increased by 25 to 35% when the vehicle system
complexity increased fourfold from 2010 to 2020 [1]. This
means that more manpower and time are required than ever
before to ensure the safety and reliability of the vehicle during
the development and validation stages. Therefore, measures to

increase productivity in the development and validation stages
are needed.

The development and validation processes for in-vehicle
embedded systems following the traditional V-cycle require
long lead times in the development and validation stages. In
particular, when electronic control units (ECUs) and software
are developed in parallel to meet vehicle launch schedules, it
can be time-consuming and costly to solve the problems
arising during the stage of integrating them. As a way of
addressing this issue, methods have emerged to virtualize
ECUs and perform simulations using virtual ECUs to validate
systems with fast cycles in the early stage of development.
Virtual ECUs allow for fast testing without the need to prepare
physical ECU samples. Moreover, tests under complex
conditions that are difficult to implement in real-world tests
can be performed through simulations [2].

We have been conducting research on how to virtualize
and simulate ECUs using QEMU(Quick EMUlator) to
increase the efficiency of the development and validation
stages of in-vehicle embedded systems. QEMU can be used to
virtualize ECUs based on software implementation of specific
hardware. In the absence of a physical ECU, using QEMU for
ECU virtualization enables simultaneous development and
validation of in-vehicle embedded systems, resulting in time
and cost efficiency. However, since QEMU-based ECU
virtualization is performed by software implementation of not
only the ECU but also the connectivity of peripheral devices
connected to the ECU, there is a problem that the precision of
the operation time is reduced depending on the performance
and resource utilization of the host personal computer (Host
PC) [3][4]. In the case of in-vehicle embedded systems, real-
time performance must be guaranteed, so it is also necessary
to increase the precision of the operation time in simulation.

In this paper, we propose a technique to improve the
precision of virtual ECU operation time by virtualizing ECU
using QEMU and reflecting physical ECU operation time. In
the case of ECU virtualization, we virtualize a Cortex-M4-
based STM32F407ZGT [5] and run a software package
developed according to AUTOSAR (AUTomotive Open
System Architecture) Classic, a representative standard for in-
vehicle embedded software. To improve the operation time
precision of the virtual ECU, we propose a method to improve
the operation time precision of the virtual ECU by adjusting
the unit time of the AUTOSAR OS running on the virtual
ECU based on the operation speed of the real ECU and show
the results of the implementation.

265979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

In this paper Section 2 describes the results of previous
studies, and Section 3 describes the ECU virtualization
method for to run AUTOSAR. Section 4 describes the
technique for improving the operation time precision of virtual
ECUs and shows its implementation results, and Section 5
provides the conclusion.

II. PREVIOUS WORKS
AUTOSAR is an organization that aims to develop and

establish an open standard software architecture for ECUs
installed in vehicles [6]. The main platforms are AUTOSAR
Classic and AUTOSAR Adaptive. The former is an embedded
real-time standard based on OSEK (Offene Systeme und deren
Schnittstellen für die Elektronik in Kraftfahrzeugen), and the
latter utilizes an operating system based on the POSIX
standard. In this paper, only AUTOSAR Classic will be
discussed. Fig. 1 roughly shows the architecture of
AUTOSAR Classic.

Fig. 1. Architecture of AUTOSAR Classic Platform

ASW (Application Software) refers to the various
applications defined by the OEM. For the RTE (Runtime
Environment), a VFB(Virtual Function Bus) is provided to
enable independent operation between ASW and BSW (Basic
Software). BSW consists of Service Layer, ECU Abstraction
Layer, MCAL (Microcontroller Abstraction Layer), and CDD
(Complex Device Driver) as the core structure of AUTOSAR.
Each layer of BSW operates independently of each other and
exists to pass data up or down based on each layer. The
hierarchical division of AUTOSAR plays a major role in
increasing reusability and development efficiency for
software. For AUTOSAR Classic, development is performed
by generating ARXML(AutosaR XML), the configuration
information for in-vehicle embedded systems, utilizing
ARXML to generate source code for ASW and BSW, and then
generating executable.

Fig. 2. Result of previous works

We have been conducting research on how to develop
AUTOSAR Classic software that runs on a virtual ECU based
on open software [7]. As a result, we have been able to
generate source code for AUTOSAR Classic based on
ARXML generated by the ARXML Configuration Tool [8]

and generate it as an executable file. Fig. 2 shows the
AUTOSAR Classic software running on a general-purpose
virtual ECU provided by QEMU as a result of the research and
development. We have also developed a CAN communication
tool [9][10] to facilitate CAN communication tests of the
virtual ECU. In previous works, experiments and
implementations were conducted targeting the versatile board
provided by QEMU to verify the operation of AUTOSAR
Classic, but the versatile board of QEMU has the drawback of
poor usability in the automotive industry. Therefore,
virtualization will be performed for STM32F4W07ZGT based
on Cortex-M4, which is highly usable in the automotive field,
and AUTOSAR Classic will be operated and tested on the
virtualized STM32F407ZGT. In the case of AUTOSAR
Classic, only the MCAL of the BSW has dependencies on the
ECU, so existing AUTOSAR Classic’s MCAL must be
implemented appropriately based on the STM32F407 to
enable operation on the physical ECU. The developed
AUTOSAR Classic software is then utilized as the software to
run on the virtual ECU in Section 3. Fig. 3 shows the result of
modifying the MCAL to run on the STM32F407 and running
the above developed AUTOSAR Classic software on the
physical ECU [11].

Fig. 3. The result of modification of MCAL on real ECU
(STM32F407ZGT6)

III. VIRTUALIZATION OF STM32F407 FOR AUTOSAR

A. Architecture of QEMU for ECU virtualization
QEMU is a type of virtualization software, which has the

characteristic that the entire software stack created for device
types other than x86 can be executed on a virtual machine
[12].

Fig. 4. Conceptual architecture of QEMU

Fig. 4 shows the architecture of the virtual ECU for
implementing the STM32F407ZGT as a virtual ECU based on

266

QEMU. The Machine of the virtual ECU supports clock
generation of the virtual ECU’s SoC (System-on-Chip) and
CPU, and supports data exchange between the Host PC and
the virtual ECU through the I/O BUS and I/O interface. SoC
is composed of vCPU, Memory, Sysbus, and I/O. The vCPU
supports a binary translator that can run the code of the virtual
ECU on the Host PC through the TCG Tiny Code Generator
), and Memory consists of RAM and Flash. Sysbus is a bus
that allows vCPU and I/O to access Memory. I/O has the role
of simulating the operation of various peripherals supported
by the virtual ECU and managing registers corresponding to
the peripherals.

B. Virtualization of STM32F407
STM32F407ZGT6 is a development board that has a

Cortex-M4 32-bit RISC core with ARMV7 architecture, and
it supports CAN communication, which is the most widely
used in automotive communication networks. To implement
the STM32F407ZGT6 as a virtual ECU using QEMU, it is
necessary to implement the Machine and SoC corresponding
to the STM32F407ZGT6.

1) Implemantion of Machine
First, a Machine is added in the configuration, as shown in

Table 1, so that the STM32F407ZGT can be used on QEMU.
Based on this, the STM32F407ZGT can be selected as a
virtual ECU when running QEMU, and the operations shown
in Table 2 are performed by calling stm32f-407zg.c when the
STM32F407ZGT is selected.

TABLE I. CONFIGURATON FOR MACHINE

Add machine: hw/arm/meson.build
arrm_ss.add(when: ‘CONFIG_STM32F_407ZG’, if_true: files(‘stm32f-
407zg.c’))
Map SoC into machine: hw/arm/Kconfig
config STM32F_407ZG

bool
select STM32F405_SOC

Enable machine: configs/devices/Kconfig
CONFIG_STM32F_407ZG=y

Table 2 shows the implementation of the Machine’s
functionality. In stm32f_407zg_machine_init,
ARM_CPU_TYPE_NAME specifies the type of CPU to use
in the SoC. Stm32f_407zg_init is for assigning the clock
generated by clock_new to the SoC using
qdev_connect_clock_in. Sysbus_realize_and_unref is for
creating Sysbus, and armv7m_load_kernel is for loading the
firmware.

TABLE II. IMPLEMENTATION OF MACHINE

Implementation : stm32f-407zg.c
static void stm32f_407zg_init(MachineState *machine)
{
 Clock *sysclk;
/* Create clk */
 sysclk = clock_new(OBJECT(machine), "SYSCLK");
/* Set SoC */
 dev = qdev_new(TYPE_STM32F405_SOC);
 …
/* Set clk for SOC */
 qdev_connect_clock_in(dev, "sysclk", sysclk);
/* Create & Init Sysbus to connect various devices */
 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);

/* Load firmware*/

 armv7m_load_kernel(ARM_CPU(first_cpu), machine-
>kernel_filename, 0, FLASH_SIZE);
}
…
static void stm32f_407zg_machine_init(MachineClass *mc)
{
 /* Call function for Init */
 mc->init = stm32f_407zg_init;
 /* CPU type */
 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m4");
…
}

2) Implementation of SoC
Since QEMU does not support the STM32F407, we use

the SoC of the STM32F405, which has the most similar
architecture. Therefore, when running STM32F407ZGT,
STM32F405_soc.c is executed as the SoC. However, it can
have the same architecture as STM32F407 if additional
peripherals not supported by STM32F405 are registered.
Table 3 shows the configuration for this, in which the
STM32F4XX_CAN option is added to support the CAN
communication of STM32F407.

TABLE III. CONFIGURATON FOR THE ADDING SOC

Add SoC: hw/arm/meson.build
arrm_ss.add(when: ‘CONFIG_STM32F_405_SOC’, if_true:
files(‘stm32f-405_soc.c’))
Map devices into SoC: hw/arm/Kconfig
config STM32F405_SOC
 bool
 select ARM_V7M
 select OR_IRQ
 select STM32F4XX_SYSCFG
 select STM32F4XX_EXTI
 select STM32F4XX_GPIO
 select STM32F4XX_CAN

However, since STM32F405 and STM32F407 have
different system configurations, it is necessary to register the
status information for the supported peripherals, as shown in
Table 4, so that the status information for each device can be
updated based on the system information of STM32F407. In
this paper, to support the scenario for improving the timing
accuracy of virtual ECU operation using the physical ECU’s
synchronous timing, it is necessary to support an additional
LED. Therefore, STM32F4XXGpioState is added to indicate
the status of GPIO. Furthermore, STM32F4XXCanState is
added to update the status information of CAN, and
CanBusState is added to check the status of CAN
communication bus.

TABLE IV. IMPLEMENTATION OF SOC

hw/arm/stm32f405_soc.h
struct STM32F405State {
 STM32F4XXGpioState gpio[STM_NUM_GPIOS];
 STM32F4XXCanState can[STM_NUM_CANS];
 CanBusState *canbus[STM_NUM_CANS];
};

When QEMU is executed, the peripheral list is registered
using the information in TypeInfo. Then, when the Machine
is executed, the peripheral devices registered in the Machine
are initialized through class_init, and the instances of the
devices are created and initialized through instance_init.
Stm32f405_soc_realize uses memory_region_init_xxx,
memory_region and add_subregion to initialize various
memories and allocate memory hierarchically. DEVICE()

267

contains information about the peripherals added at the time
of SoC addition. The peripherals can access specific addresses
on the sysbus through sysbus_mmio_map.
Sysbus_connect_irq sets the IRQ (Interrupt Request) so that a
specific peripheral can receive interrupts on the Sysbus. In
order for a device registered in the virtual ECU to
communicate with the outside world, information about the
interface must be registered in stm32f405_soc_properties, so
CAN BUS was added through DEFINE_PROP_LINK.

3) Implementation results
Figure 5 shows results of running the AUTOSAR software

package for LED control on the physical STM32F407ZGT6
and the virtual ECU. The virtual ECU was run in the
environment shown in Table 5.

TABLE V. IMPLEMENTATION OF SOC

hw/arm/stm32f405_soc.c
static const TypeInfo stm32f405_soc_info = {
 …
 .instance_init = stm32f405_soc_initfn,
 .class_init = stm32f405_soc_class_init,
};
…
static void stm32f405_soc_realize(DeviceState *dev_soc, Error **errp)
{
 STM32F405State *s = STM32F405_SOC(dev_soc);
 MemoryRegion *system_memory = get_system_memory();
 DeviceState *dev, *armv7m;
 SysBusDevice *busdev;

 /* Configure clock */
 clock_set_mul_div(s->refclk, 8, 1);
 clock_set_source(s->refclk, s->sysclk);

/************* [Memory allocation] *************/
/* Flash Memory & RAM & Cache*/
 memory_region_init_rom(&s->flash, OBJECT(dev_soc),
"STM32F405.flash",FLASH_SIZE, &err);
 memory_region_add_subregion(system_memory,
FLASH_BASE_ADDRESS, &s->flash);
…
/************* [CPU] *************/
 …
/************* [Peripheral] *************/
 …
 /* GPIO devices */
 for (i = 0; i < STM_NUM_GPIOS; i++) {
 busdev = SYS_BUS_DEVICE(dev);
 sysbus_mmio_map(busdev, 0, gpio_addr[i]);
 sysbus_connect_irq(busdev, 0, s->gpio[i].irq);
 }
 /* Attach CAN and CAN controllers */
 for (i = 0; i < STM_NUM_CANS; i++) {
 dev = DEVICE(&(s->can[i]));
 busdev = SYS_BUS_DEVICE(dev);
 sysbus_mmio_map(busdev, 0, can_addr[i]);
 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(armv7m,
can_irq[i]));
 }
}
/* External Interface */
static Property stm32f405_soc_properties[] = {
 DEFINE_PROP_STRING("cpu-type", STM32F405State, cpu_type),
 DEFINE_PROP_LINK("canbus0", STM32F405State, canbus[0],
TYPE_CAN_BUS, CanBusState *),
 DEFINE_PROP_LINK("canbus1", STM32F405State, canbus[1],
TYPE_CAN_BUS, CanBusState *),
 DEFINE_PROP_END_OF_LIST(),
};

(a) Physical STM32F407

(b) Virtual STM32F407
Fig. 5. Operation of AUTOSAR-based Application on STM32F407-based
Target Board (a) real STM32F407;(b) virtual STM32F407

TABLE V. IMPLEMENTATION OF SOC

PC Processor : Intel® Core™ i7-1160G7 @ 1.20GHz 2.11
GHz
Memory : 16GB
OS : Windows 11, x64

IV. ENHANCING OPERATIONAL ACCURACY FOR V ECU

A. Scenario for Measuring Operation Time Error Between
Physical and Virtual ECUs
As a scenario to check whether there is an error in the

precision of the operation time between the physical ECU and
the virtual ECU, a CAN message is sent to the Host PC every
time the state of each LED changes while turning on/off four
LEDs every 200ms. The difference between the time when the
CAN message arrives () and the time when the previous
message was sent () is the time it takes for the ECU to
turn on/off the LED, which can be considered as the ECU
operation time. It is repeated over a number of times () to
calculate the average operation time of the ECU ().
Here, rECU denotes the average operation time of the
physical ECU, and vECU denotes the average operation time
of the virtual ECU. Therefore, the error rate () of the
operation time between the physical ECU and the virtual ECU
can be obtained as shown in Eq. (1). If the deviation is less
than 0, it means that the virtual ECU is operating slower than
the physical ECU, and if it is greater than 0, it means that the
virtual ECU is operating faster than the physical ECU.

 %  1  
 ∗ 100 (1)

268

   


 ∶   ℎ   :   ℎ  (ms)  ∶     /
 ∶      

Table 6 shows the experimental results, and we can see
that, in general, the virtual ECU operates slower than the
physical ECU. This confirms that there is a temporal error in
the operation of ECU between the virtual and physical
environments. These errors can also be influenced by the
availability of the Host PC or the complexity of the application
running on the ECU.

TABLE VI. RESULTS OF COMPARING THE TIME BASED ON
TRANSMISSION IN PHYSICAL AND VIRTUAL ENVIRONMENTS (BEFORE
CALIBRATION, N=30)

Set   %

1 2055.00 1995.05 -2.98

2 2052.97 1995.00 -2.91

3 2046.13 1995.43 -2.54

4 2041.43 1997.10 -2.22

5 2041.50 1997.6 -2.20

6 2039.60 1996.57 -2.16

7 2039.23 1995.50 -2.19

8 2039.20 1995.57 -2.12

9 2036.63 1994.43 -2.20

10 2038.27 1994.43 -2.37

Average(ms) 2043.00 1995.71 -2.40

B. Method to Improve the Operation Time Precision of
Virtual ECU by Reflecting Physical ECU's Operation
Time

Fig. 6. Operation sequence diagram for correcting errors in the virtual ECU
by reflecting the physical ECU

In this paper, to improve the operation accuracy of the
virtual ECU based on the physical ECU, we propose a method
of modifying systick, the unit time of ECU, by implementing
a separate app in the AUTOSAR CDD area, as shown in Fig.
6. To improve the accuracy of the virtual ECU based on the
same operation on the virtual ECU and the physical ECU, we
ran same AUTOSAR software on the virtual ECU and the
physical ECU. APP1 is a Systick calibration app that runs in
the CDD area. When a measurement start command is sent
from the outside, the ACK message is returned to account for
potential variations in data transmission
time(T  T_) by the communication
circuit's configuration. Subsequently, the Systick value
(_) set in the individual ECU with a measurement
termination signal after a specified duration (T and T_)
from the relevant timestamp (T and T_).

As for the AUTOSAR ASW, we ran the LED application
provided, which is APP2 in the diagram. Calibrator is a
separate PC application that measures the operation time of
the virtual ECU (T– T– T) and that
of the physical ECU T_– T_– T_). It calculates
the calibrated Systick (__) using Eq. (2) and
delivers it to the virtual ECU.

  

_ – _– _

– –  ∗ _ (1)

_: Virtual ECU’s current systick value T: Time at which the test result of the virtual ECU CDD module is
received T : Time at which the virtual ECU CDD module transmitted the
measurement signal T: Time delayed due to communication of the virtual ECU CDD
module T_: Time at which the physical ECU CDD module received the test
result T_: Time at which the physical ECU CDD module transmitted the
measurement signal T_ : Time delayed due to communication of the physical
ECU CDD module

In Fig. 7, (a) and (b) show the results before and after
ECU’s systick calibration, respectively. In the figure, ①
shows a graph of the communication cycle, which is the result
of CAN communication based on AUTOSAR ASW of the
virtual ECU (blue) and the physical ECU (orange). The x-axis
represents the number of CAN messages received by
Calibrator, and the y-axis represents    . ②
displays the timestamps along with the messages received
from the virtual ECU and physical ECU. ③ displays the step-
by-step progress of the operation to correct the time error of
the virtual ECU by utilizing the physical ECU. ④ displays
the error of the operation time between the virtual ECU and
the physical ECU in real-time. In the Communication Cycle
Graph in Fig. 9, the communication error gap between the
ECUs is reduced in (b) than in (a).

In Table 7, the operation time error rate between the
physical ECU and virtual ECUs was calculated after
performing the calibration based on the same method as Table
6. It shows that the error rate of 2.40% before performing the
calibration was reduced to 0.02%.

269

Fig. 7. Calibrator execution screens: (a)before calibration; (b)30 sec after
calibration

TABLE VII. RESULTS OF COMPARING THE TIME BASED ON
TRANSMISSION IN PHYSICAL AND VIRTUAL ENVIRONMENTS (AFTER
CALIBRATION, =30)

Set   %
1 1996.57 1996.03 -0.03

2 2000.60 1995.47 -0.26

3 1988.50 1994.97 0.18

4 1999.73 1996.60 -0.16

5 1992.23 1995.50 0.16

6 1994.27 1997.07 0.14

7 1995.70 1995.47 0.01

8 1996.53 1993.93 -0.13

9 1997.63 1993.93 -0.19

10 1993.87 1995.53 0.08

Average(ms) 1995.56 1995.45 0.02

V. CONCLUSION
In this paper, we conducted research on virtualizing

STM32F407ZGT6 and reducing operational discrepancies in
both virtual and physical environments using AUTOSAR. We
demonstrated the addition of the machine and SoC in QEMU
for virtualizing STM32F407ZGT6, as well as the inclusion of
various peripherals. As a result, we confirmed that the newly
implemented STM32F407ZGT6 is capable of running
AUTOSAR Classic and CAN communication. Moreover, by
adjusting the virtual ECU's systick based on the operational
time of the physical and virtual ECUs, we were able to reduce
the temporal discrepancies in the operation. This approach
overcomes the limitations of traditional QEMU, which
performs complete virtualization of the ECU, by incorporating
the characteristics of the physical hardware to calibrate and
mitigate potential errors. Additionally, in a mixed
environment utilizing both virtual and physical ECUs, we
expect to enhance the precision of communication based on
the ECU's operation, enabling more accurate validation of
vehicle embedded systems. In the future, we plan to conduct
further research on adjusting the systick to achieve hardware-
independent operation in virtual ECUs, simulating similar
time discrepancies as hardware operation based on the
workload of the App, even in the absence of physical ECUs.

ACKNOWLEDGMENT
This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded
by the Korea government(MSIP) (No.1711160343,
Development of virtual ECU-based vehicle-level integrated
simulation technology for vehicle ECU application software
development and verification automation)

REFERENCES
[1] O. Burkacky, J. Deichmann, D. Hepp, S. Frank, and A. Rocha, “When

code is king: Mastering automotive software excellence,” 17-Feb-2021.
[Online]. Available:
https://www.mckinsey.com/industries/automotive-and-assembly/our-
insights/when-code-is-king-mastering-automotive-software-
excellence?cid=eml-web

[2] T. Kim. "Vehicle Test and Validation in Virtual Environment" AUTO
JOURNAL : Journal of the Korean Society of Automotive Engineers
40, 8 (2018) : 66-68.

[3] R. Misbin and A. George, “QEMU-Based Emulation-in-
the-Loop for the Simulation of Small Satellite Flight
Software,” presented at the - 2023 IEEE Aerospace
Conference, 2023, pp. 1–8, doi:
10.1109/AERO55745.2023.10115569.

[4] S. B. Oh and J. H. Kim, “An Analysis on Interrupt
Latency of Hypervisor for Automotive Software
Integration,” vol. 30, no. 11. The Korean Society of
Automotive Engineers, pp. 901–907, 2022

[5] STM32F407ZGT User Manual V1.0 ,” 2012 [Online].
Available:
https://kazus.ru/forums/attachment.php?attachmentid=4
0217&d=1352233087

[6] AUTOSAR [Online]. Abailable:
https://ko.wikipedia.org/wiki/AUTOSAR

[7] AUTOAS [Online]. Available:
https://github.com/autoas/as

[8] J. H. Lee, W. J. Han, A. Yang, “A Designing of
Automotive Embedded Software for Virtual ECU” , The
Korean Institute of Communications and Information
Sciences Winter Conference 2023, Pyeongchang,
GangWon, South Korea, 2023, pp. 313-313.

[9] J. S. Kong, W. J. Han, A. Yang, “A Utilization
Automotive Embedded Software for Virtual ECU”, The
Korean Institute of Communications and Information
Sciences Winter Conference 2023, Pyeongchang,
GangWon, South Korea, 2023, pp. 315 - 316

[10] I. H. Lee, W. J. Han, A. Yang, “A Structure of
CAN/CAN-FD for Automotive Embedded Software
based on Virtual ECU” , The Korean Institute of
Communications and Information Sciences Winter
Conference 2023, Pyeongchang, GangWon, South
Korea, 2023, pp. 317-318

[11] J. S. Kong, W. J. Han, A. Yang, “Implementation of
MCAL CAN for Applying Validated AUTOSAR in a
Virtual Environment to STM32F” , The Korean Institute
of Communications and Information Sciences Summer
Conference 2023, Jeju, South Korea, 2023

[12] WiKi, “QEMU.” [Online]. Available:
https://ko.wikipedia.org/w/index.php?title=QEMU&old
id=34819587.

270

