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Abstract— As support for a wider range of functions and 
services of vehicles, such as driver assistance systems, 
autonomous driving, and OTA services, has increased in recent 
years, the complexity of software embedded in vehicles has 
become increasingly complex. These changes are driving 
demand for simulation technologies that can help reduce 
development and validation time while ensuring vehicle safety 
and reliability. Among them, electronic control unit 
virtualization technology is steadily being researched and 
commercialized by many companies because it can consider the 
characteristics of ECUs from the development and validation 
stages of in-vehicle embedded software. In this paper, we discuss 
the virtualization method of STM32F407ZGT using QEMU as 
part of ECU virtualization technology. Furthermore, we 
propose a technique to reduce the simulation error by 
measuring the running time of the physical ECU and adjusting 
the unit time in the AUTOSAR OS on the virtual ECU. This is 
to reduce the simulation error caused by the dependence on the 
host computer environment and the generation of overhead in 
the case of highly computational in-vehicle embedded software, 
which have been pointed out as problems in ECU virtualization 
using QEMU. The experimental results of the proposed 
technique show that the simulation timing error rate of the 
virtual ECU compared to the physical ECU is reduced from an 
average of 2.40% to 0.02%. This shows that, just by reflecting 
the operational characteristics of the physical ECU in the 
QEMU-based virtual ECU, it is possible to improve the 
precision by reducing the timing error of the simulation. 

Keywords—virtual ECU, Simulation, QEMU, AUTOSAR, 
Operation Accuracy 

I. INTRODUCTION 
Recently, the automotive industry has witnessed 

significant advancements, with the integration of technologies 
such as ADAS(Advanced Driver Assist System), AD 
(Autonomous Driving), RDE(Real Driving Emission), and 
driver convenience systems into vehicles. These 
advancements have led to a significant increase in the number 
of E/E(Electrical/Electronic) systems integrated into vehicles, 
thereby escalating the overall system complexity. According 
to a survey on the productivity improvement of development 
compared to system complexity for in-vehicle embedded 
systems, it was found that the productivity of vehicle 
development increased by 25 to 35% when the vehicle system 
complexity increased fourfold from 2010 to 2020 [1]. This 
means that more manpower and time are required than ever 
before to ensure the safety and reliability of the vehicle during 
the development and validation stages. Therefore, measures to 

increase productivity in the development and validation stages 
are needed.  

The development and validation processes for in-vehicle 
embedded systems following the traditional V-cycle require 
long lead times in the development and validation stages. In 
particular, when electronic control units (ECUs) and software 
are developed in parallel to meet vehicle launch schedules, it 
can be time-consuming and costly to solve the problems 
arising during the stage of integrating them. As a way of 
addressing this issue, methods have emerged to virtualize 
ECUs and perform simulations using virtual ECUs to validate 
systems with fast cycles in the early stage of development. 
Virtual ECUs allow for fast testing without the need to prepare 
physical ECU samples. Moreover, tests under complex 
conditions that are difficult to implement in real-world tests 
can be performed through simulations [2]. 

We have been conducting research on how to virtualize 
and simulate ECUs using QEMU(Quick EMUlator) to 
increase the efficiency of the development and validation 
stages of in-vehicle embedded systems. QEMU can be used to 
virtualize ECUs based on software implementation of specific 
hardware. In the absence of a physical ECU, using QEMU for 
ECU virtualization enables simultaneous development and 
validation of in-vehicle embedded systems, resulting in time 
and cost efficiency. However, since QEMU-based ECU 
virtualization is performed by software implementation of not 
only the ECU but also the connectivity of peripheral devices 
connected to the ECU, there is a problem that the precision of 
the operation time is reduced depending on the performance 
and resource utilization of the host personal computer (Host 
PC) [3][4]. In the case of in-vehicle embedded systems, real-
time performance must be guaranteed, so it is also necessary 
to increase the precision of the operation time in simulation. 

In this paper, we propose a technique to improve the 
precision of virtual ECU operation time by virtualizing ECU 
using QEMU and reflecting physical ECU operation time. In 
the case of ECU virtualization, we virtualize a Cortex-M4-
based STM32F407ZGT [5] and run a software package 
developed according to AUTOSAR (AUTomotive Open 
System Architecture) Classic, a representative standard for in-
vehicle embedded software. To improve the operation time 
precision of the virtual ECU, we propose a method to improve 
the operation time precision of the virtual ECU by adjusting 
the unit time of the AUTOSAR OS running on the virtual 
ECU based on the operation speed of the real ECU and show 
the results of the implementation. 
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In this paper Section 2 describes the results of previous 
studies, and Section 3 describes the ECU virtualization 
method for to run AUTOSAR. Section 4 describes the 
technique for improving the operation time precision of virtual 
ECUs and shows its implementation results, and Section 5 
provides the conclusion.  

II. PREVIOUS WORKS 
AUTOSAR is an organization that aims to develop and 

establish an open standard software architecture for ECUs 
installed in vehicles [6]. The main platforms are AUTOSAR 
Classic and AUTOSAR Adaptive. The former is an embedded 
real-time standard based on OSEK (Offene Systeme und deren 
Schnittstellen für die Elektronik in Kraftfahrzeugen), and the 
latter utilizes an operating system based on the POSIX 
standard. In this paper, only AUTOSAR Classic will be 
discussed. Fig. 1 roughly shows the architecture of 
AUTOSAR Classic.  

 
Fig. 1. Architecture of AUTOSAR Classic Platform 

ASW (Application Software) refers to the various 
applications defined by the OEM. For the RTE (Runtime 
Environment), a VFB(Virtual Function Bus) is provided to 
enable independent operation between ASW and BSW (Basic 
Software). BSW consists of Service Layer, ECU Abstraction 
Layer, MCAL (Microcontroller Abstraction Layer), and CDD 
(Complex Device Driver) as the core structure of AUTOSAR. 
Each layer of BSW operates independently of each other and 
exists to pass data up or down based on each layer. The 
hierarchical division of AUTOSAR plays a major role in 
increasing reusability and development efficiency for 
software. For AUTOSAR Classic, development is performed 
by generating ARXML(AutosaR XML), the configuration 
information for in-vehicle embedded systems, utilizing 
ARXML to generate source code for ASW and BSW, and then 
generating executable.  

 
Fig. 2. Result of previous works 

We have been conducting research on how to develop 
AUTOSAR Classic software that runs on a virtual ECU based 
on open software [7]. As a result, we have been able to 
generate source code for AUTOSAR Classic based on 
ARXML generated by the ARXML Configuration Tool [8] 

and generate it as an executable file. Fig. 2 shows the 
AUTOSAR Classic software running on a general-purpose 
virtual ECU provided by QEMU as a result of the research and 
development. We have also developed a CAN communication 
tool [9][10] to facilitate CAN communication tests of the 
virtual ECU. In previous works, experiments and 
implementations were conducted targeting the versatile board 
provided by QEMU to verify the operation of AUTOSAR 
Classic, but the versatile board of QEMU has the drawback of 
poor usability in the automotive industry. Therefore, 
virtualization will be performed for STM32F4W07ZGT based 
on Cortex-M4, which is highly usable in the automotive field, 
and AUTOSAR Classic will be operated and tested on the 
virtualized STM32F407ZGT. In the case of AUTOSAR 
Classic, only the MCAL of the BSW has dependencies on the 
ECU, so existing AUTOSAR Classic’s MCAL must be 
implemented appropriately based on the STM32F407 to 
enable operation on the physical ECU. The developed 
AUTOSAR Classic software is then utilized as the software to 
run on the virtual ECU in Section 3. Fig. 3 shows the result of 
modifying the MCAL to run on the STM32F407 and running 
the above developed AUTOSAR Classic software on the 
physical ECU [11]. 

 
Fig. 3. The result of modification of MCAL on real ECU 
(STM32F407ZGT6) 

III. VIRTUALIZATION OF STM32F407 FOR AUTOSAR 

A. Architecture of QEMU for ECU virtualization 
QEMU is a type of virtualization software, which has the 

characteristic that the entire software stack created for device 
types other than x86 can be executed on a virtual machine 
[12].  

 
Fig. 4. Conceptual architecture of QEMU 

Fig. 4 shows the architecture of the virtual ECU for 
implementing the STM32F407ZGT as a virtual ECU based on 
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QEMU. The Machine of the virtual ECU supports clock 
generation of the virtual ECU’s SoC (System-on-Chip) and 
CPU, and supports data exchange between the Host PC and 
the virtual ECU through the I/O BUS and I/O interface. SoC 
is composed of vCPU, Memory, Sysbus, and I/O. The vCPU 
supports a binary translator that can run the code of the virtual 
ECU on the Host PC through the TCG Tiny Code Generator 
), and Memory consists of RAM and Flash. Sysbus is a bus 
that allows vCPU and I/O to access Memory. I/O has the role 
of simulating the operation of various peripherals supported 
by the virtual ECU and managing registers corresponding to 
the peripherals. 

B. Virtualization of STM32F407 
STM32F407ZGT6 is a development board that has a 

Cortex-M4 32-bit RISC core with ARMV7 architecture, and 
it supports CAN communication, which is the most widely 
used in automotive communication networks. To implement 
the STM32F407ZGT6 as a virtual ECU using QEMU, it is 
necessary to implement the Machine and SoC corresponding 
to the STM32F407ZGT6. 

1) Implemantion of Machine 
First, a Machine is added in the configuration, as shown in 

Table 1, so that the STM32F407ZGT can be used on QEMU. 
Based on this, the STM32F407ZGT can be selected as a 
virtual ECU when running QEMU, and the operations shown 
in Table 2 are performed by calling stm32f-407zg.c when the 
STM32F407ZGT is selected. 

TABLE I.  CONFIGURATON FOR MACHINE 

Add machine: hw/arm/meson.build  
arrm_ss.add(when: ‘CONFIG_STM32F_407ZG’, if_true: files(‘stm32f-
407zg.c’)) 
Map SoC into machine: hw/arm/Kconfig 
config STM32F_407ZG 

bool 
select STM32F405_SOC 

Enable machine: configs/devices/Kconfig 
CONFIG_STM32F_407ZG=y 

Table 2 shows the implementation of the Machine’s 
functionality. In stm32f_407zg_machine_init, 
ARM_CPU_TYPE_NAME specifies the type of CPU to use 
in the SoC. Stm32f_407zg_init is for assigning the clock 
generated by clock_new to the SoC using 
qdev_connect_clock_in. Sysbus_realize_and_unref is for 
creating Sysbus, and armv7m_load_kernel is for loading the 
firmware. 

TABLE II.  IMPLEMENTATION OF MACHINE 

Implementation : stm32f-407zg.c 
static void stm32f_407zg_init(MachineState *machine) 
{ 
    Clock *sysclk; 
/* Create clk */ 
    sysclk = clock_new(OBJECT(machine), "SYSCLK"); 
/* Set SoC */ 
    dev = qdev_new(TYPE_STM32F405_SOC); 
    … 
/* Set clk for SOC */ 
    qdev_connect_clock_in(dev, "sysclk", sysclk); 
/* Create & Init Sysbus to connect various devices */ 
    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 
 
/* Load firmware*/ 

    armv7m_load_kernel(ARM_CPU(first_cpu), machine-
>kernel_filename, 0, FLASH_SIZE); 
} 
… 
static void stm32f_407zg_machine_init(MachineClass *mc) 
{  
   /* Call function for Init */ 
    mc->init = stm32f_407zg_init; 
   /* CPU type */ 
    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m4"); 
… 
} 

2) Implementation of SoC 
Since QEMU does not support the STM32F407, we use 

the SoC of the STM32F405, which has the most similar 
architecture. Therefore, when running STM32F407ZGT, 
STM32F405_soc.c is executed as the SoC. However, it can 
have the same architecture as STM32F407 if additional 
peripherals not supported by STM32F405 are registered. 
Table 3 shows the configuration for this, in which the 
STM32F4XX_CAN option is added to support the CAN 
communication of STM32F407.  

TABLE III.  CONFIGURATON FOR THE ADDING SOC 

Add SoC: hw/arm/meson.build 
arrm_ss.add(when: ‘CONFIG_STM32F_405_SOC’, if_true: 
files(‘stm32f-405_soc.c’)) 
Map devices into SoC: hw/arm/Kconfig 
config STM32F405_SOC 
 bool 
 select ARM_V7M 
 select OR_IRQ 
 select STM32F4XX_SYSCFG 
 select STM32F4XX_EXTI 
 select STM32F4XX_GPIO 
 select STM32F4XX_CAN 

However, since STM32F405 and STM32F407 have 
different system configurations, it is necessary to register the 
status information for the supported peripherals, as shown in 
Table 4, so that the status information for each device can be 
updated based on the system information of STM32F407. In 
this paper, to support the scenario for improving the timing 
accuracy of virtual ECU operation using the physical ECU’s 
synchronous timing, it is necessary to support an additional 
LED. Therefore, STM32F4XXGpioState is added to indicate 
the status of GPIO. Furthermore, STM32F4XXCanState is 
added to update the status information of CAN, and 
CanBusState is added to check the status of CAN 
communication bus.  

TABLE IV.  IMPLEMENTATION OF SOC 

hw/arm/stm32f405_soc.h 
struct STM32F405State { 
    STM32F4XXGpioState gpio[STM_NUM_GPIOS]; 
    STM32F4XXCanState can[STM_NUM_CANS]; 
    CanBusState *canbus[STM_NUM_CANS]; 
}; 

When QEMU is executed, the peripheral list is registered 
using the information in TypeInfo. Then, when the Machine 
is executed, the peripheral devices registered in the Machine 
are initialized through class_init, and the instances of the 
devices are created and initialized through instance_init. 
Stm32f405_soc_realize uses memory_region_init_xxx, 
memory_region and add_subregion to initialize various 
memories and allocate memory hierarchically. DEVICE() 
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contains information about the peripherals added at the time 
of SoC addition. The peripherals can access specific addresses 
on the sysbus through sysbus_mmio_map. 
Sysbus_connect_irq sets the IRQ (Interrupt Request) so that a 
specific peripheral can receive interrupts on the Sysbus. In 
order for a device registered in the virtual ECU to 
communicate with the outside world, information about the 
interface must be registered in stm32f405_soc_properties, so 
CAN BUS was added through DEFINE_PROP_LINK.  

3) Implementation results 
Figure 5 shows results of running the AUTOSAR software 

package for LED control on the physical STM32F407ZGT6 
and the virtual ECU. The virtual ECU was run in the 
environment shown in Table 5. 

TABLE V.  IMPLEMENTATION OF SOC 

hw/arm/stm32f405_soc.c 
static const TypeInfo stm32f405_soc_info = { 
    … 
    .instance_init = stm32f405_soc_initfn, 
    .class_init    = stm32f405_soc_class_init, 
}; 
… 
static void stm32f405_soc_realize(DeviceState *dev_soc, Error **errp) 
{ 
    STM32F405State *s = STM32F405_SOC(dev_soc); 
    MemoryRegion *system_memory = get_system_memory(); 
    DeviceState *dev, *armv7m; 
    SysBusDevice *busdev; 
 
    /* Configure clock */ 
    clock_set_mul_div(s->refclk, 8, 1); 
    clock_set_source(s->refclk, s->sysclk); 
 
/************* [Memory allocation] *************/ 
/* Flash Memory & RAM & Cache*/ 
    memory_region_init_rom(&s->flash, OBJECT(dev_soc), 
"STM32F405.flash",FLASH_SIZE, &err); 
    memory_region_add_subregion(system_memory, 
FLASH_BASE_ADDRESS, &s->flash); 
… 
/************* [CPU] *************/ 
    … 
/************* [Peripheral] *************/ 
    … 
    /* GPIO devices */ 
    for (i = 0; i < STM_NUM_GPIOS; i++) { 
        busdev = SYS_BUS_DEVICE(dev); 
        sysbus_mmio_map(busdev, 0, gpio_addr[i]); 
        sysbus_connect_irq(busdev, 0, s->gpio[i].irq); 
    } 
    /* Attach CAN and CAN controllers */ 
    for (i = 0; i < STM_NUM_CANS; i++) { 
        dev = DEVICE(&(s->can[i])); 
        busdev = SYS_BUS_DEVICE(dev); 
        sysbus_mmio_map(busdev, 0, can_addr[i]); 
        sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(armv7m, 
can_irq[i])); 
    } 
} 
/* External Interface */ 
static Property stm32f405_soc_properties[] = { 
    DEFINE_PROP_STRING("cpu-type", STM32F405State, cpu_type), 
    DEFINE_PROP_LINK("canbus0", STM32F405State, canbus[0], 
TYPE_CAN_BUS, CanBusState *), 
    DEFINE_PROP_LINK("canbus1", STM32F405State, canbus[1], 
TYPE_CAN_BUS, CanBusState *), 
    DEFINE_PROP_END_OF_LIST(), 
}; 

 

 

 

(a) Physical STM32F407 

  

(b) Virtual STM32F407 
Fig. 5. Operation of AUTOSAR-based Application on STM32F407-based 
Target Board (a) real STM32F407;(b) virtual STM32F407 

TABLE V.  IMPLEMENTATION OF SOC 

PC Processor : Intel® Core™ i7-1160G7 @ 1.20GHz 2.11 
GHz 
Memory : 16GB 
OS : Windows 11, x64 

IV. ENHANCING OPERATIONAL ACCURACY FOR V ECU 

A. Scenario for Measuring Operation Time Error Between 
Physical and Virtual ECUs 
As a scenario to check whether there is an error in the 

precision of the operation time between the physical ECU and 
the virtual ECU, a CAN message is sent to the Host PC every 
time the state of each LED changes while turning on/off four 
LEDs every 200ms. The difference between the time when the 
CAN message arrives ( ) and the time when the previous 
message was sent () is the time it takes for the ECU to 
turn on/off the LED, which can be considered as the ECU 
operation time. It is repeated over a number of times () to 
calculate the average operation time of the ECU (). 
Here, rECU  denotes the average operation time of the 
physical ECU, and vECU denotes the average operation time 
of the virtual ECU. Therefore, the error rate () of the 
operation time between the physical ECU and the virtual ECU 
can be obtained as shown in Eq. (1). If the deviation is less 
than 0, it means that the virtual ECU is operating slower than 
the physical ECU, and if it is greater than 0, it means that the 
virtual ECU is operating faster than the physical ECU. 

 %   1  
 ∗ 100 (1) 
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   
   

 ∶   ℎ   :   ℎ  (ms)  ∶     / 
 ∶       
 

Table 6 shows the experimental results, and we can see 
that, in general, the virtual ECU operates slower than the 
physical ECU. This confirms that there is a temporal error in 
the operation of ECU between the virtual and physical 
environments. These errors can also be influenced by the 
availability of the Host PC or the complexity of the application 
running on the ECU. 

TABLE VI.  RESULTS OF COMPARING THE TIME BASED ON 
TRANSMISSION IN PHYSICAL AND VIRTUAL ENVIRONMENTS (BEFORE 
CALIBRATION, N=30) 

Set   % 

1 2055.00 1995.05 -2.98 

2 2052.97 1995.00 -2.91 

3 2046.13 1995.43 -2.54 

4 2041.43 1997.10 -2.22 

5 2041.50 1997.6 -2.20 

6 2039.60 1996.57 -2.16 

7 2039.23 1995.50 -2.19 

8 2039.20 1995.57 -2.12 

9 2036.63 1994.43 -2.20 

10 2038.27 1994.43 -2.37 

Average(ms) 2043.00 1995.71 -2.40 

B. Method to Improve the Operation Time Precision of 
Virtual ECU by Reflecting Physical ECU's Operation 
Time 

 
Fig. 6. Operation sequence diagram for correcting errors in the virtual ECU 
by reflecting the physical ECU  

In this paper, to improve the operation accuracy of the 
virtual ECU based on the physical ECU, we propose a method 
of modifying systick, the unit time of ECU, by implementing 
a separate app in the AUTOSAR CDD area, as shown in Fig. 
6. To improve the accuracy of the virtual ECU based on the 
same operation on the virtual ECU and the physical ECU, we 
ran same AUTOSAR software on the virtual ECU and the 
physical ECU. APP1 is a Systick calibration app that runs in 
the CDD area. When a measurement start command is sent 
from the outside, the ACK message is returned to account for 
potential variations in data transmission 
time(T  T_) by the communication 
circuit's configuration. Subsequently, the Systick value 
(_) set in the individual ECU with a measurement 
termination signal after a specified duration (T and T_) 
from the relevant timestamp (T and T_).  

As for the AUTOSAR ASW, we ran the LED application 
provided, which is APP2 in the diagram. Calibrator is a 
separate PC application that measures the operation time of 
the virtual ECU (T– T– T) and that 
of the physical ECU T_– T_– T_). It calculates 
the calibrated Systick (__) using Eq. (2) and 
delivers it to the virtual ECU. 

   

 
_  – _– _

– –  ∗ _ (1) 

_: Virtual ECU’s current systick value  T: Time at which the test result of the virtual ECU CDD module is 
received T : Time at which the virtual ECU CDD module transmitted the 
measurement signal T: Time delayed due to communication of the virtual ECU CDD 
module T_: Time at which the physical ECU CDD module received the test 
result T_: Time at which the physical ECU CDD module transmitted the 
measurement signal T_ : Time delayed due to communication of the physical 
ECU CDD module 

 

In Fig. 7, (a) and (b) show the results before and after 
ECU’s systick calibration, respectively. In the figure, ① 
shows a graph of the communication cycle, which is the result 
of CAN communication based on AUTOSAR ASW of the 
virtual ECU (blue) and the physical ECU (orange). The x-axis 
represents the number of CAN messages received by 
Calibrator, and the y-axis represents     . ② 
displays the timestamps along with the messages received 
from the virtual ECU and physical ECU. ③ displays the step-
by-step progress of the operation to correct the time error of 
the virtual ECU by utilizing the physical ECU. ④ displays 
the error of the operation time between the virtual ECU and 
the physical ECU in real-time. In the Communication Cycle 
Graph in Fig. 9, the communication error gap between the 
ECUs is reduced in (b) than in (a).  

In Table 7, the operation time error rate between the 
physical ECU and virtual ECUs was calculated after 
performing the calibration based on the same method as Table 
6. It shows that the error rate of 2.40% before performing the 
calibration was reduced to 0.02%. 
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Fig. 7. Calibrator execution screens: (a)before calibration; (b)30 sec after 
calibration 

TABLE VII.  RESULTS OF COMPARING THE TIME BASED ON 
TRANSMISSION IN PHYSICAL AND VIRTUAL ENVIRONMENTS (AFTER 
CALIBRATION, =30) 

Set   % 
1 1996.57 1996.03 -0.03 

2 2000.60 1995.47 -0.26 

3 1988.50 1994.97 0.18 

4 1999.73 1996.60 -0.16 

5 1992.23 1995.50 0.16 

6 1994.27 1997.07 0.14 

7 1995.70 1995.47 0.01 

8 1996.53 1993.93 -0.13 

9 1997.63 1993.93 -0.19 

10 1993.87 1995.53 0.08 

Average(ms) 1995.56 1995.45 0.02 

 

V. CONCLUSION 
In this paper, we conducted research on virtualizing 

STM32F407ZGT6 and reducing operational discrepancies in 
both virtual and physical environments using AUTOSAR. We 
demonstrated the addition of the machine and SoC in QEMU 
for virtualizing STM32F407ZGT6, as well as the inclusion of 
various peripherals. As a result, we confirmed that the newly 
implemented STM32F407ZGT6 is capable of running 
AUTOSAR Classic and CAN communication. Moreover, by 
adjusting the virtual ECU's systick based on the operational 
time of the physical and virtual ECUs, we were able to reduce 
the temporal discrepancies in the operation. This approach 
overcomes the limitations of traditional QEMU, which 
performs complete virtualization of the ECU, by incorporating 
the characteristics of the physical hardware to calibrate and 
mitigate potential errors. Additionally, in a mixed 
environment utilizing both virtual and physical ECUs, we 
expect to enhance the precision of communication based on 
the ECU's operation, enabling more accurate validation of 
vehicle embedded systems. In the future, we plan to conduct 
further research on adjusting the systick to achieve hardware-
independent operation in virtual ECUs, simulating similar 
time discrepancies as hardware operation based on the 
workload of the App, even in the absence of physical ECUs. 
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