
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

An I/O Simulation Method for AUTOSAR-Based
Operation Verification in an QEMU-Based Virtual

ECU

Anna Yang
SDV Center

DRIMAES, Korea Aerospace Univ.
Seoul, South Korea

metamon@drimaes.com

Woo Jin Han
SDV Center
DRIMAES

Seoul, South Korea
wjhan@drimaes.com

Hyeong Rae Kim
School of Electronics Engineering

Kyungpook National University
Daegu, South Korea
hrsin95@knu.ac.kr

*Jae Gon Kim
School of Electronics and Information

Engineering
Korea Aerospace Univ.
Goyang, South Korea

jgkim@kau.ac.kr

Daehyun Kum
Division of Automotive Technology

DGIST
Daegu, South Korea
kumdh@dgist.ac.kr

*Jeonghun Cho

School of Electronics and Engineering
Kyungpook National Univ.

Daegu, South Korea
jcho@knu.ac.kr

Abstract— As the user requirements for automotive
embedded systems diversify, hardware performance improves,
and software complexity increases. It is, therefore, imperative to
find ways to improve safety and reliability of vehicles. Due to
these challenges, research has been actively conducted in recent
years on methods of verifying automotive embedded systems in
a virtual environment, which is highly efficient in terms of time
and cost. This paper proposes a method for verifying automotive
embedded systems by virtualizing electronic control units
(ECUs) through Quick EMUlation (QEMU). The proposed
method simulates inputs and outputs of the I/O module by
modifying or reading the values of the virtualized ECU's
registers. For this purpose, separate Complex Device Driver
(CDD) and Application Software (ASW) are configured in
AUTomotive Open System Architecture (AUTOSAR). CDD is
implemented to periodically input signals corresponding to “on”
and “off” to the registers associated with the button inputs of the
virtualized ECU. ASW is implemented to periodically read the
registers corresponding to the buttons and turn on/off the LED.
As a result, we have found that the LED is turned on/off
appropriately in the ASW according to the register operation of
the virtual ECU in the CDD. This allows software and hardware
operation verification through hardware input/output solely by
manipulating ECU registers, without the need for a separate
external device implementation. Therefore, as a cost-efficient
and feasible verification technique, the proposed method can be
utilized for future operational verification of vehicle embedded
systems based on various input/output scenarios.

Keywords— virtual ECU, AUTOSAR classic, I/O simulation,
QEMU, Automotive Embedded Software

I. INTRODUCTION
In a recent trend, the evolution of vehicles to SDV

(software-defined vehicle)(s) has led to an increase in the
frequency of defects in vehicles as more functionality is
implemented through software. Fig. 1 illustrates this
phenomenon, showing the number of vehicles recalled due to
defects of vehicular electronic components from 2009 to
2019. The red bars represent recalls due to physical defects,
and the other bars represent recalls that are directly related to,
or presumably related to, software [1]. In particular, the
number of software-related defects has increased significantly
since 2014, and the main reason for this is the increase in
vehicle system complexity due to the development of eco-
friendly and high fuel efficiency vehicles and the addition of

engine control electronics and various electronic devices to
increase safety and convenience in vehicles [2]. Therefore,
there is an emerging need for research on technologies that can
secure the safety and reliability of vehicles while reducing
software-related defects.

 Software remedy: failure is not clearly caused by a software defect,

but a software flash or replacement is identified as the appropriate
defect remedy.

 Software integration: failure that results from software interfacing
with other components or systems in a vehicle.

 Software defect: includes the failure of components related to a defect
in operating software.

 Integrated electronics components (IECs): encompasses the failure of
electrical components due to physical defect, including defects related
to water intrusion, wiring failure, etc. (these defects are not caused or
fixed by software).

Fig. 1. Number of vehicles recalled due to electronic components defects
worldwide between 2009 and 2019, by electronic component[1]

Traditionally, the development and verification process of
automotive embedded systems is divided into design,
implementation, and integration phases and follows the V-
cycle. However, this method requires a long time for the
development and verification phases. To solve this problem,
it is necessary to conduct research on virtual environment tests

271979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

by virtualizing ECUs(Electronic Control Units), which
facilitates verification tests in a short cycle at the early stage
of development [3].

In this paper, we propose a method to verify the operation
of the target ECU and software by simulating the inputs and
outputs of the DIO (Digital Input/Output) module. This is
done through software manipulation of Read-Only and Write-
Only Registers. This is achieved by virtualizing
STM32F407ZGT6 [4] as a target ECU using QEMU (Quick
EMUlation) and running AUTOSAR (AUTomotive Open
System Architecture) Classic on the virtual ECU. When
implementing an ECU with QEMU, the ECU is driven
entirely by software and can be manipulated to perform
actions such as writing values to the Read-Only Register and
reading values from the Write-Only Register, which are not
possible with existing physical hardware. Therefore, it is
possible to simulate inputs and outputs of the DIO by
configuring software to manipulate the DIO Read/Write-Only
Registers of the target ECU in the CDD (Complex Device
Driver) region of AUTOSAR.

Section 2 of this paper describes the verification of
AUTOSAR operation by simulating inputs and outputs of the
I/O in a QEMU-based virtual ECU. Section 3 presents test
scenarios for verification of AUTOSAR operation on a virtual
ECU, and Section 4 presents the results of the implementation.
Finally, Section 5 provides the conclusion.

II. VERIFICATION OF AUTOSAR FUNCTIONALITY THROUGH
I/O EMULATION IN EXISTING QEMU-BASED VIRTUAL ECUS

A. General method of simulating I/O in an existing QEMU-
based virtual ECU
In its broadest sense, QEMU as shown in Fig. 2 is a generic

hardware emulator. It can be used standalone to create a
virtual machine environment, but more often QEMU is
executed under Xen or KVM to support device virtualization
to the guest. In this case, QEMU provides simulation for
peripherals including PCI Bridge, VGA card,
mouse/keyboard, hard disk, CD-ROM, network adapters,
sound card, etc., using dynamic translation between virtual
and physical devices [5].

Fig. 2. QEMU as an emulator [5]

The architecture of a virtual ECU using QEMU is shown
in Fig. 3. The virtual ECU primarily consists of three main
components. Within the core, there is a CPU dedicated to
emulating embedded software, along with an I/O interface to
handle peripheral configurations. The memory component
emulates both RAM and Flash memory for the virtual ECU.
And, a device interface facilitates communication with the
host PC.

Fig. 3. Simplified Architecture of vECU

The general architecture of virtual ECU implemented
using QMEU is shown in Fig. 4. To implement a target ECU
using QEMU, a machine and a system on chip (SoC) should
be set up and implemented.

Fig. 4. Architecture of virtual ECU implemented using QEMU

The machine is composed of parts that perform roles such
as configuring the SoC and I/O interface of the target board
and generating CPU clock. The SoC is composed of CPU,
Memory, Sysbus, and I/O [6]. The CPU provides the function
to translate source code written for the target ECU through the
Tiny Code Generator (TCG), a binary translation engine, to
execute it on the host personal computer (Host PC). The
Sysbus acts as a channel for the CPU and I/O to access
Memory.

272

As shown in Fig. 5, the typical operation for data exchange
between a virtual ECU and the Host PC is passed through the
I/O interface to the I/O.

Fig. 5. Typical I/O between the virtual ECU and Host PC

The I/O module is divided into Peripheral Mimic, which
simulates the operation of peripherals, and Register Manager,
which manages registers for the peripherals. When a data read
or write command for a specific peripheral is sent to
Peripheral Mimic from Memory, Peripheral Mimic calls
Register Manager to receive a value for a specific register and
returns it to Memory. The implementation of I/O data input
and output in this way is cumbersome because it requires the
implementation of a Host PC program that sends/receives data
between the Host PC and the virtual ECU and the
configuration of an I/O interface that can pass data from the
Host PC program to the virtual ECU.

B. Proposed method for I/O simulation in QEMU-based
virtual ECU
This study proposes a method to configure the Read-Only

Registers and Write-Only Registers of the virtual ECU I/O to
be accessible to read or write data without any additional
program or interface configuration in order to verify the
operations of the virtual ECU and software by allowing the
values of the virtual ECU registers to be directly modified or
read from the AUTOSAR CDD region running on the virtual
ECU. In the implementation of the proposed method, it is
necessary to consider how data is exchanged in the case of
operation simulation when there is input data from the outside
and operation simulation when data is output from the inside
to the outside.

Fig. 6 shows the method of simulating I/O input and output
for an external input. The Read-Only Register is a register
where the value inputted from the outside can be only read
from the inside. Therefore, the operation for writing data to
the Read-Only Register can be performed by mapping an
instruction to Memory so that the
Memory_region_dispatch_write() operation can be performed
on the memory region and allocating a memory to store the
value to perform write to the register. To verify this, the CDD
and ASW must be designed to allow the following operations.
The AUTOSAR CDD of the virtual ECU calls

Memory_region_dispatch_write mapped to a gray box region
in Memory, and passes the value to be written to the Read-
Only Register. Then, Memory calls the Peripheral Mimic of
I/O and writes the value to the Read-Only Register in the
Register Manager and waits. Afterwards, if the AUTOSAR
ASW requests the value of the variable corresponding to the
Read Only Memory, Memory_region_dispatch_read, which is
mapped to a white box in Memory via AUTOSAR RTE,
Service Layer, ECU Abstract Layer, and MCAL, is called.
Then, the register read command is executed, and the
Peripheral Mimic of I/O is called. The Peripheral Mimic
receives the value stored in the Read-Only Register and
returns it back to Memory. The data returned to Memory can
be passed to the Upper Layer through the MCAL and then
finally passed to the ASW.

Fig. 6. Simulation of I/O input for external input

Fig. 7 shows the method of checking whether the output
data is properly written to the Write-Only Register when the
virtual ECU outputs data to the outside.

Fig. 7. Simulation of I/O output for external output

Typically, the Write-Only Register supports both Read
and Write, but for simplicity, it is assumed that it supports
Write only. The Write-Only Register is used to store data that
needs to be exported from inside the Virtual ECU to the
outside, and to read the register, the

273

Memory_region_dispatch_read command must be mapped to
a memory region, and memory must be allocated to store the
read values for transmission to AUTOSAR. This way, if the
ASW calls Memory_region_dispatch_write to write a value to
a specific register and passes the value, then Memory calls the
Peripheral Mimic, and the Peripheral Mimic performs the
write operation to the corresponding register. Afterwards, if
the CDD region calls Memory_region_dispatch_read to read
a Write-Only Register, Memory calls the Peripheral Mimic. If
the Peripheral Mimic requests the value of that Register from
the Register Manager, the Register Manager returns the value
to the Peripheral Mimic, which is in turn returned the CDD
region via Memory.

In Memory_region_dispatch_read and
Memory_region_dispatch_write, it cannot be determined
whether a particular register is Read Only or Write Only.
Memory_region_dispatch_XXXX can call a GPIO that is set
up appropriately for the target ECU, check the information
about the register inside the GPIO, and perform the read or
write operation appropriately depending on the register.
Therefore, to simulate the data input and output of I/O in the
virtual ECU, it is necessary to modify the read/write operation
of the GPIO corresponding to the target ECU. In this paper,
we selected STM32F407ZGT as the target ECU. QEMU
supports STM32F4xx_gpio, which supports GPIO in
STM32F4xx series boards. Therefore, we added
gpio_idr=value and gpio_odr=value to the
stm32f4xx_gpio_write function of STM32F4xx_gpio to store
the value passed from inside the vECU in IDR_ADDR, a
Read-Only Register, and ODR_ADDR, a Write-Only
Register. We also made a modification to return the values
stored in gpio_idr and gpio_odr when IDR_ADDR and
ODR_ADDR of stm32f4xx_gpio_read are called so that the
values stored in IDR_ADDR and ODR_ADDR can be read
from inside the virtual ECU. Finally, when
stm32f4xx_gpio_write or stm32f4xx_gpio_read is called and
the state of IDR_ADDR or ODR_ADDR is changed, a log is
generated to output it.

III. IMPLEMENTATION RESULTS

A. Simulation scenarios of I/O input and output in QEMU-
based virtual ECU
Test scenarios to verify that I/O is properly simulated in a

QEMU-based virtual ECU are shown in Fig. 8 and Fig. 9.

Fig. 8 shows a scenario to verify the operation of
AUTOSAR ASW when a value is entered from the outside.
AUTOSAR CDD calls CDD_WriteInputDataRegister, a
function to write a value to a specific button register, and
passes the value to Memory, which calls
Memory_region_dispatch_write to write the value to the
register corresponding to the button and waits. After that, for
the operation of reading the value of the button in AUTOSAR
ASW, AUTOSAR MCAL performs Dio_ReadChannel
through each layer of AUTOSAR. Then,
Memory_region_dispatch_read returns the memory, and the
value is passed to AUTOSAR ASW. Then, when the function
that turns the LED on/off according to the button’s value is
called, the Dio_WriteChannel of AUTOSAR MCAL is
executed, and the value is written to the LED register and
output to the QEMU terminal to check the result of the
operation.

Fig. 9 shows a scenario to check whether AUTOSAR
ASW is working correctly by reading the change in the status
value of the register corresponding to a specific LED when
that LED is turned on or off in AUTOSAR ASW. When
wirte_led is performed in AUTOSAR ASW, MCAL calls
Dio_WriteChannel. Then, Memory performs
Memory_region_dispatch_write to write the value to the
register corresponding to the LED. After that, when the CDD
calls CDD_ReadOutputDataRegister to read the value of the

Fig. 8. LED output scenario based on button input

274

corresponding LED register, Memory performs
Memory_region_dispatch_read, which returns the LED status
value. The value is passed to the CDD, and the result is output
to the QEMU terminal.

B. Execution Results
The result of implementing and executing the above

scenario is shown in Fig. 10. The terminal in the figure
displays the changes in the registers according to the virtual
ECU operation, and the QEMU window at the bottom displays
the register information of the virtual ECU. Figure 8 shows
the result of implementing the LED output scenario according
to button input. For the message output to the terminal, “Key
X Buttom up” represents the state where the button X is not
pressed, and the LED X corresponding to Key X should in the
off state. “Key X Button down” represents the state where the
button X is pressed, and the LED X corresponding to Key X
should be in the turned-on state. In the results of operations
checked based on this, when a value corresponding to Up is
written to the ODRs of Key3 and Key4 of the virtual ECU, the
IDRs corresponding to LED 3 and LED4 are turned Off.
Furthermore, when a value corresponding to Down is written
to the ODRs of Key1, Key3, and Key4, it is found that LED1,
LED3, and LED4 are turned On, and as a result of reading the
IDRs corresponding to LED1, LED3, and LED4, it is found
that the LEDs are in the turned-on state.

IV. CONCLUSION
As the complexity of automotive embedded systems

increases, there is an increasing need to perform functional
verification in advance during the vehicle development phase
to ensure the reliability and safety of the vehicle. However, it
is costly and time-consuming to perform tests based on
physical ECUs, and it is possible to reduce the time and cost
of testing by creating virtual ECUs based on software
implementation of ECUs and utilizing them to perform tests
before performing physical ECU-based tests. To this end, this
study proposes a method for I/O verification in AUTOSAR
software using QEMU-based virtual ECUs and presents the
results of the implementation. Since the proposed method

does not require the implementation of a Host PC program or
I/O interface to verify I/O on conventional QEMU-based
virtual ECUs, it can effectively reduce the time required for
testing. Furthermore, it can be effectively utilized to verify the
functions of AUTOSAR software and the operation of ECUs
for various I/O communications, such as CAN, LIN, and
Ethernet, as well as DIO presented in the study. However,
since it may be difficult to perform debugging when an
incorrect value is written to the Read-Only Register region,
further research is needed to secure the reliability in this
aspect.

Fig. 10. Implementation of scenario

Fig. 9. Scenarios to check the change in the register value based on LED operation

275

ACKNOWLEDGMENT
This work was supported by Institute for Information &

communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No. 1711160343,
Development of virtual ECU-based vehicle-level integrated
simulation technology for vehicle ECU application software
development and verification automation)

(Corresponding authors: J. G. Kim; J. Cho)

REFERENCES
[1] S. R. Ross and S. estimates, “Number of vehicles recalled due to

electronic components defects worldwide between 2009 and 2019, by
electronic component ,” 2021. [Online]. Available:
https://www.statista.com/statistics/1279659/number-of-vehicles-
recalled-due-to-electronic-components-defects-worldwide/

[2] B.-G. Moon, C.-W. Lee, and H.-J. Shim, “Global Automobile Recall
Trends and Implications for Us,” Auto Journal of The Korean Society
Of Automotive Engineers, 2014.

[3] T. Kim. “Vehicle Test and Validation in Virtual Environment,” AUTO
JOURNAL : Journal of the Korean Society of Automotive Engineers
40, 8 (2018) : 66-68.

[4] Y. Song, H. Wang, and T. Soyata, “Hardware and software aspects of
vm-based mobile-cloud offloading,” IGI Global, 2015, pp. 247–271.

[5] A. Yang, W. H. Seol, K. J. Yong, I. ho Lee, H. W. Jin, and J. H. Cho,
“Virtualization and Testing of STM32F407 for Enhancing Operational
Timing Accuracy in AUTOSAR,” in Proc. Int. Conf. Infor. Communi.
Technol. Convergence (ICTC), Jeju Island, Korea, 2023.

[6] STM32F407ZGT User Manual V1.0, 2012 [Online]. Available:
https://kazus.ru/forums/attachment.php?attachmentid=40217&d=135
2233087

276

