
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A FMI-based Approach for CAN Bus Simulation
and Simulink Model Integration in Vehicle

Simulation Environment

Hyeongrae Kim
School of Electronics and Electrical

Engineering
Kyungpook National University

Daegu, South Korea
hrsin95@knu.ac.kr

Harim Lee
School of Electronics Engineering

Kyungpook National University
Daegu, South Korea
hw05165@knu.ac.kr

Jeonghun Cho
School of Electronics Engineering

Kyungpook National University
Daegu, South Korea

jcho@knu.ac.kr

Abstract— Automotive software is becoming more complex
and diverse, making the development and verification process
more important. However, the existing integrated simulation
environment does not reflect the characteristics of CAN
communication that can occur in the real vehicle environment.
In this paper, we propose a Functional Mock-up Interface (FMI)
2.0-based approach to build an integrated simulation
environment that includes a CAN bus. We design and
implement a CAN Bus Simulation (CBS) FMU model that can
simulate CAN communication among various models of vehicle
systems, and an FMI CAN Function Module that can make
Simulink models compatible with CAN communication. We also
integrate the developed models into the MasterSim simulation
environment and verify that the data exchange between the
models is performed correctly. Our approach has several
advantages over the existing methods. First, it supports various
models and tools that comply with the FMI 2.0 standard. Second,
it can simulate the actual operation of the CAN bus such as
message transmission time and priority, and evaluate the impact
of these factors on system performance. Lastly, it preserves the
original structure and function of Simulink models and requires
only minimal modifications to support CAN communication.

Keywords— virtual ECU, Functional Mock-up Interface,
Simulink, CAN simulation, automotive embedded software

I. INTRODUCTION
Recently, automotive software has become more complex

and diverse due to technological innovations and consumer
demand in the automotive industry, such as ADAS,
autonomous driving, connectivity, etc. [1]. This software is
embedded in various ECUs in the vehicle and controls and
senses the vehicle. In addition, automotive software requires
safety and reliability, so the software development and
verification process take a lot of cost and time. Especially in
the vehicle system development process, the hardware
development speed is slower than the software development
speed, so even if the software is developed in advance, the
environment for testing it is limited. That makes it difficult to
verify the software for various situations that may occur in the
actual vehicle environment. To solve this problem, the
introduction of virtual ECUs for vehicle environment
simulation is increasing [2]. A virtual ECU is an ECU that
simulates the hardware of a real ECU in software and runs on
a PC. Using virtual ECUs can reduce hardware dependency
and perform software development and verification efficiently.

Software operation verification in a single virtual ECU is
important, but software verification in the entire system is also
important. To verify the software in the entire system, data
exchange between virtual ECUs and models developed

Fig. 1. Difference between direct and CAN data exchange in simulation

externally must be considered. For this purpose, we have
developed an integrated vehicle simulation environment based
on FMI 2.0 that can interconnect virtual ECUs and exchange
data with various models. However, the existing FMI
simulation research is data exchange that does not reflect the
characteristics of the actual CAN communication system. Fig.
1 shows the difference between the existing data exchange and
the data exchange that reflects the characteristics of CAN
communication. In the former case, direct connections are
made between models that require data exchange, and data is
exchanged directly when data exchange time occurs during
simulation. In contrast, in the latter case, all models are
connected to the CAN Bus model and exchange data through
the CAN Bus. CAN Bus is a network technology that allows
various ECUs inside a vehicle to exchange data and has
advantages such as real-time, reliability, and low cost.
However, also there are problems such as transmission delay,
message collision, bit error, etc. On the CAN Bus, these
problems can affect the operation of the software. Therefore,
it is very important to build an integrated simulation
environment that includes CAN Bus and verify the software
under similar conditions to real vehicles.

There have been various studies on introducing CAN Bus
to simulation. [3] proposed a method to develop a vehicle
CAN Bus simulation and test system using a tool called
CANoe from Vector Co., Ltd. However, this method incurs a
high cost for acquiring hardware and software. [4] performed
a CAN Bus simulation based on queuing model to analyze
problems such as transmission delay, message collision, bit
error, etc. of CAN Bus. However, this simulation does not
include FMI standard, so it is difficult to build an integrated
simulation environment. [5] describes how to support CAN
communication simulation in FMI 3.0. However, FMI 3.0
standard was announced relatively recently and there are
limited open sources available for research.

279979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

Fig. 2. Flow diagram of the FMI Master Algorithm

In this paper, we propose a module for CAN
communication between various models in an integrated
vehicle simulation environment called CAN Bus Simulation
(CBS) FMU module and a method to make Simulink [6]
model compatible with an FMI-based integrated simulation
environment with CBS FMU. CBS module is an FMU based
on FMI 2.0 standard that is compatible with various
simulation tools and models and has high scalability and
reusability. This module calculates transmission time
according to the CAN message and performs arbitration to
determine the priority of CAN messages to reproduce the
actual operation of CAN communication. This enables
simulation based on timing and actual operation of CAN
messages. The Simulink model is a modeling and simulation
tool provided by MATLAB that can develop and test various
vehicle SWs and control algorithms. We designed FMI CAN
Function Module for the Simulink model to send and receive
CAN messages through FMI CAN communication. This
module is located at the data input/output end of the existing
Simulink module and converts data from the Simulink model
into FMI CAN message to transmit through FMI CAN
communication, extracts data from the message received
through FMI CAN communication, and delivers it as input
data to the model. This method enables smooth data exchange
between CBS FMU and Simulink model.

This paper covers the following chapters. First, in Section
2, we describe the background knowledge related to this
research, and in Section 3, we introduce the concept, structure,
and function of the CBS FMU that we propose. In Section 4,

we propose a method to make the Simulink model compatible
with CAN communication-based FMI integrated simulation
environment. In Section 5, we explain how to integrate the
developed models into the simulation environment and the
settings. In Section 6, we conclude with future works.

II. BACKGROUND

A. Functional Mock-up Interface (FMI)
FMI [7] is a standardized interface that provides

compatibility between models developed in different tools and
supports integrated simulation. FMI provides a container in
the form of a ZIP file consisting of XML files, binary files, C
code, and an interface defined in C language. The container of
the ZIP file is called a Functional Mock-up Unit (FMU). In
the integrated simulation environment, FMUs are imported
and the initial values of the variables defined in each FMU are
set and connected with other FMUs before performing the
integrated simulation. Recently, most modeling tools,
including Simulink, provide the function to export models as
FMUs. FMUs consist of models in the form of differential
equations and solvers for numerical analysis. During
simulation, they receive inputs at agreed times and use solvers
to analyze the models and output the results.

FMI supports two modes: Model Exchange (ME) and Co-
Simulation (CS). In the former case, the FMU does not have a
solver, but instead provides information such as variables,
models, parameters, etc. to the importer or master. Then, the
importer uses its solver to analyze the model of the FMU.
Therefore, all FMUs operate according to the time step of the
import. In the latter case, the FMU has a solver and receives
input from the importer and analyzes the model with its solver,
and sends output at regular intervals. Which mode to use
depends on the situation. Generally, ME mode is suitable for
cases where accuracy is important, and CS mode is suitable
for cases where speed and security are important. In our
project, since we ultimately construct an integrated simulation
environment for virtual ECUs as targets, we use CS mode.
Virtual ECUs operate with their own timers and exchange data
according to the time set by the importer, so CS mode is
suitable.

The operation of FMI usually proceeds according to the
master algorithm shown in Fig. 2. First, all imported FMUs
are instantiated and set initial values embedded in each FMU
before starting a simulation. The communication point is
determined at the boundary of the time step set by the importer
when data exchange occurs during simulation. When the
communication point occurs, the importer calls fmi2SetData
to update the variables of each FMU with data stored from the
previous time step. Then it calls fmi2doStep of each FMU to
proceed with simulation and then calls fmi2GetData to store
the output. At this time, Data is called by the importer
according to variables defined in a modelDescription.xml of
each FMU. This operation is repeated until the simulation time
is set before the simulation ends.

In this paper, CBS FMU is implemented using FMU SDK
[8]. FMU SDK is a free software development kit provided by
Qtronic that provides functionality to create FMUs based on
C language. FMU SDK supports both FMI 1.0 and FMI 2.0
standards. To create an FMU using FMU SDK, you need to
write C language source code and model description XML file
that defines variables. C language is mostly provided as a

280

Fig. 3. Data flow in CBS FMU-based CAN communication simulation

template by FMI, and users can add their behavior and write
it.

B. Simulink Model Export
Simulink is a modeling and simulation tool that works in

MATLAB environment and is widely used as a tool for
visualizing and modeling complex system behavior. It
provides a graphic diagram-based interface that allows
intuitive modeling and simulation of system dynamics.
Simulink allows you to represent system behavior by
combining blocks and lines, and through this you can simulate
system behavior from the initial design stage to predict and
analyze actual behavior. And you can extract this system as an
FMU, making it easier to create an FMU.

Simulink includes libraries and tools that support system
modeling in various fields, and you can also bring in
additional libraries and tools. In addition, you can create
blocks that define behavior in C language as well as
MATLAB language, so you can create blocks that are not
supported or optimize existing blocks to suit your system.

C. MasterSim
MasterSim [9] is an FMI integrated simulation

environment that supports FMI Co-Simulation 1.0 and 2.0.
This tool sets initial values for simulation, imports FMUs,
connects them and performs integrated simulation. MasterSim

consists of GUI settings and command line simulations. In
GUI settings, you can import FMU slaves and connect
input/output variables. At this time, you can control the data
flow required for simulation by connecting input/output
variables graphically. In addition, you can set simulation
options such as simulation start time, end time, master
algorithm, logging, etc. The options set through GUI settings
are saved as scripts in project files. Command line simulation
loads project files created by GUI and executes simulation as
defined in project files. Simulation results are saved as CSV
files.

III. CAN BUS SIMULATION FMU
The data transmission flow between models, when CBS

is present, is shown in Fig. 3. FMU1 sends a CAN message
to CBS FMU for CAN transmission. The CBS FMU that
received the CAN message performs two operations. First, it
compares the ID of the received CAN message and the
previous messages in the buffer to compare the priority. If the
priority of the received message is the highest, it decides to
send the message. After deciding which message to send, it
calculates the transmission time of the message and sends it
to all connected FMUs. The FMU2 that received the message
confirms that it is a message to be received through CAN ID
filtering and receives it.

A. CAN Message Transfer Time
The calculation of the transmission time of the CAN

message (CMTT) is as follows in equation (1). 1 Time Quanta
(TQ) is obtained by taking the reciprocal of Clock Frequency.
By multiplying this value with Bit Time, which is the
transmission time of one bit of CAN data, and the entire size
(bit) of the CAN message, one can calculate the transmission
time of the CAN message. At this time, Clock Frequency and
Bit Time are defined as variables of CBS FMU so that
simulation users can set initial values. The variable parts of
the CAN message are the ID field with 11 bits in version 2.0A
and 29 bits in version 2.0B, and the Data field with up to 64
bits depending on the value of the Data Length Code (DLC)
field. Since there are two versions, if you define version
information as Boolean-type data, only data length depending
on the DLC bit remains as a variable parameter. Therefore,
when data comes in, read DLC and add the bit size of the fixed
area and bit size of the data area to get the total CAN message
size and multiply it by 1TQ and Bit Time to calculate
transmission time. CBS FMU stores data from Source FMU
internally and sends data to the Destination at the
communication point closest to the calculated transmission
time.

 CMTT = 1TQ * Bit Time * Size of CAN Message ()

B. CAN Message Arbitration
CAN Arbitration is a method to determine the priority of

messages and avoid collisions on the CAN bus. Actual CAN
performs bit-by-bit arbitration. When multiple nodes try to
send messages on the CAN bus at the same time, each node
compares the ID of the message the are sending with a signal
on the bus bit by bit. The ID of the message has higher as the

281

Fig. 4. Arbitration using the priority queue

value is smaller. If the node is transmitting recessive bit (1)
and detects dominant bit (0) on the bus, it determines that its
priority is low and stops or postpones transmission. On the
contrary, if the node is transmitting the dominant bit and
detects the dominant bit on the bus, it determines that its
priority is high or equal and continues transmission. In this
way, only messages with the highest priority can occupy the
bus and be fully transmitted.

In the integrated simulation, data exchange between CAN
communication is done by message unit, so it is difficult to
implement bit-by-bit arbitration. Therefore, we propose a
method to perform arbitration by message unit. Fig. 4 shows
an arbitration we propose. This method puts a buffer in CBS
FMU and stores all CAN messages from FMUs that want to
transmit at the communication step in the buffer. Currently,
the buffer is implemented as a priority queue with Min Heap.
Since a smaller ID means higher priority for the CAN message,
if pushed into the priority queue with Min Heap, higher
priority means closer to the head of the queue. A message with
the highest priority is popped at that time step and sent after
calculating the transmission time. Messages that were pushed
back in priority remain in the queue. After transmission, when
the next time step comes, compare priority with new messages
coming in and determine the order of transmission.

C. CBS FMU using FMU SDK
We implemented CBS FMU using FMU SDK. First, we

defined variables in the modelDescription.xml file. Table 1
shows a list of variables defined in modelDescript.xml. Name
means the name of the variable, and Type means the data type
of the variable. Data types supported by FMI 2.0 include Real,
Integer, Boolean, String, and Enum types. Causality is a
property that defines how a variable interacts with the outside
of the model. There is a Parameter whose value does not
change after initialization, Input, which is a variable that
receives a value from outside the model, and Output, which
is a variable that sends a value to the outside of the model.
Variability is a property that defines how the value of a
variable changes over time. It is defined in the Continuous-
time domain and Discrete in the discrete-time domain. A
constant value is determined before model initialization and

the others are determined after model initialization. There are
Clock Frequency and Bit Time for calculating message
transmission time, and they are defined as Real and Integer
respectively. A version variable of Boolean type determines
whether it is CAN 2.0A or 2.0B. We declared ID indicating
the priority of the CAN message, DLC indicating the data
length of the CAN message and actual data. Since the Integer
variable of FMI 2.0 is 32 bits, we declared two variables
Data1 and Data2 to represent all 8 bytes of data. Next, we
wrote the behavior that CBS FMU will perform in the
fmi2doStep function in the C file. If there is an update of the
FMU variable, push the ID variable of the corresponding
value into the priority queue, pop data from the queue, and
determine the message with the highest priority. If the CBS
FMU finds a message with the highest priority, change the
state variable to BUSY, read the DLC of corresponding data,
calculate message transmission time, and send corresponding
data at the communication point closest to this time. After
calculating message transmission time, even if higher priority
data comes in before sending time, CBS FMU is already in a
BUSY state, so the message goes into the priority queue and
gets an opportunity to be sent after the transmission is over
and state variable of CBS FMU becomes an IDLE state.

TABLE I. CBS FMU VARIABLE LIST

Variable List in modelDescription.xml
Name Type Causality Variability

Clock Frequency Real Parameter Constant

Bit Time Integer Parameter Constant

Version Boolean Parameter Constant

IN_ID Integer Input Discrete

IN_DLC Integer Input Discrete

IN_Data1 Integer Input Discrete

IN_Data2 Integer Input Discrete

OUT_ID Integer Output Discrete

OUT_DLC Integer Output Discrete

OUT_Data1 Integer Output Discrete

OUT_Data2 Integer output Discrete

282

Fig. 5. Pseudo-code of FMI CAN Function Module

CAN COMMUNICATION SIMULINK MODEL
The existing Simulink model exchanges data itself, and the

data received through CBS FMU is delivered to all nodes, so
it cannot communicate properly with CAN if it uses the
received message as it is. We designed the FMI CAN Function
Module to perform FMI CAN communication simulation with
CBS while maintaining the original Simulink model. We will
add a custom block using the pseudocode shown in Fig. 5 to
make the existing Simulink model compatible. The data that
comes in as input first passes through the CAN ID Filter
function. In this function, it compares the ID of the incoming
message with the predefined ID list, and if it matches, it
recognizes that it is its own data and moves on to the next
function, otherwise, it stops processing the message. If it
confirms that it is a message to be processed, it goes through
the process of extracting data from the message. Since FMI
2.0 does not support array variables, the data of the message
received from CBS FMU is stored in two 32-bit integer data
variables, and the Merge Data block connects these two data
variables to make one 64-bit integer data. The model uses this

6. CBS FMU and Simulink models with FMI CAN Function Module
integrated into MasterSim

processed data as an input variable. Conversely, when the
Simulink model outputs data, it goes through the Split Data
block and makes two 32-bit integer data. After passing
through Generate Message block, the generated CAN
message is sent to CBS FMU.

IV. INTEGRATION TEST OF THE DEVELOPED MODELS IN THE
SIMULATION ENVIRONMENT

We integrated CBS FMU and improved the Simulink
model into the simulation environment to perform integrated
simulations. The integrated simulation environment is based
on MasterSim. We confirmed that FMU was imported without
error when importing CBS FMU and FMU extracted from the
Simulink model in MasterSim and confirmed that the
input/output connection between each model was done
normally. Fig. 6 shows how FMUs are imported in MasterSim.
We have not defined the exact model yet, so we configured
the simulation setting with a default value and confirmed that
CAN message transmission and reception were done.

V. CONCLUSION
In this paper, we proposed an FMI 2.0-based approach for

CAN bus simulation and Simulink model integration in a
vehicle simulation environment. We designed and
implemented the CAN Bus Simulation (CBS) FMU model
that can simulate CAN communication between various
models of vehicle systems and the FMI CAN Function module
that can make the Simulink model compatible with CAN
communication. In addition, we integrated the developed
models into MasterSim simulation environment and
confirmed that data exchange between models was performed
correctly.

Our approach has several advantages over existing
methods. First, it can support various models and tools that
comply with FMI 2.0 standard. Second, it can simulate actual
operation of the CAN bus such as message transmission time,
priority, etc., and evaluate the impact of these factors on
system performance. Lastly, it can preserve the original
structure and function of the Simulink model and requires
minimal modification to support CAN communication.

/* CAN ID filtering function */

function IdFilter(id, array, arraySize)

 r = 1

/* array contains ID value to be received */

 for index = 0 to arraySize - 1

 if id == array[index] then

 r = 0

 break

 end if

 end for

 return r

end function

/* Merge Data from FMI */

function MergeData(data1, data2, mergedData)

 mergedData = 0

 mergedData |= (data1 << 32)

 mergedData |= data2

end function

/* Split Data for FMI */

function SplitData(outputData, data1, data2)

 data1 = (outputData >> 32)

 data2 = (outputData & 0xFFFF)

end function

283

Our research will solve the following problems in future
work. First, limitations of FMI 2.0 for CAN. FMI 2.0 does not
support array variables, so data is divided into two 32-bit
integer variables for simulation. This increases unnecessary
operations. Also, the communication point in FMI 2.0 is static
once determined, so the accuracy of message transmission
time may be low even if message transmission time is
calculated. On the other hand, FMI 3.0 supports the array
variable type and it can adjust the length of the communication
step during simulation. These problems should be solved first
when FMI 3.0 becomes popular. In addition, as we target SW
development and verification through virtual ECU, we will
integrate virtual ECU that operates similarly to actual ECU
into an integrated simulation environment and obtain
meaningful CAN simulation results.

ACKNOWLEDGMENT
This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded
by the Korea government(MSIT) (No. 1711160343,
Development of virtual ECU-based vehicle-level integrated
simulation technology for vehicle ECU application software
development and verification automation)

REFERENCES
[1] S. K. Anjum and C. Wolff, "Agile Principles in Automotive Software

Development: Analysis of Potential Levers," 2021 IEEE European
Technology and Engineering Management Summit (E-TEMS),
Dortmund, Germany, 2021, pp. 141-147, doi: 10.1109/E-
TEMS51171.2021.9524860.B.-G. Moon, C.-W. Lee, and H.-J. Shim,
“Global Automobile Recall Trends and Implications for Us,” Auto
Journal of The Korean Society Of Automotive Engineers, 2014.

[2] Chrisofakis, Emmanuel & Junghanns, Andreas & Kehrer, Christian &
Rink, Anton. (2011). Simulation-based development of automotive
control software with Modelica. 1-7. 10.3384/ecp110631.

[3] F. Zhou, S. Li and X. Hou, "Development method of simulation and
test system for vehicle body CAN bus based on CANoe," 2008 7th
World Congress on Intelligent Control and Automation, Chongqing,
China, 2008, pp. 7515-7519, doi: 10.1109/WCICA.2008.4594092.

[4] Zhang, J., Li, T. (2013). Based on the Queuing Model of CAN Bus
Simulation and Application. In: Yin, Z., Pan, L., Fang, X. (eds)
Proceedings of The Eighth International Conference on Bio-Inspired
Computing: Theories and Applications (BIC-TA), 2013. Advances in
Intelligent Systems and Computing, vol 212. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-37502-6_76

[5] Modelica Association. (2023). FMI Library Set for Bus
Communication [online]. Available: https://modelica.github.io/fmi-ls-
bus/main/

[6] Klee, H., & Allen, R. (2017). Simulation of Dynamic Systems with
MATLAB® and Simulink® (3rd ed.). CRC Press.
https://doi.org/10.1201/9781315154176

[7] "Functional Mock-up Interface for Model Exchange and Co-
Simulation", 2.0 Release Candidate 1, October 2013, [online]
Available: https://www.fmi-standard.org.

[8] Qtronic. (2021). FMU SDK free software development kit. [online]
Available: https://github.com/qtronic/fmusdk

[9] Bauklimatik Dresden. (2022). MasterSim User Manual. [Online].
Available:https://bauklimatik-
dresden.de/mfiguregFastersim/help/MasterSim_manual_en.html

284

