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Abstract— We propose a cubic spline interpolation scheme 

with low complexity for wireless communication systems. The 
proposed scheme is significantly more efficient in terms of 
computational complexity compared to the conventional 
interpolation schemes based on FFT/IFFT, and allows arbitrary 
time precision. The performance of the proposed scheme is 
evaluated using an example. 
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I. INTRODUCTION 
In wireless communication systems, interpolation of a 

discrete-time signal is often required to perform various 
functions of the system (e.g., finding the maximum of cross-
correlation signal when the maximum is between data 
samples). 

A. The problem 
Given discrete-time samples   𝑦𝑦� = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦�) , 𝑦𝑦 =

⋯ , −2, −1, 0, 1, 2, ⋯, of a signal 𝑦𝑦𝑦𝑦𝑦), find 𝑦𝑦𝑦𝑦𝑦) at 𝑦𝑦 = 𝑡𝑡𝑦𝑦� + 𝜏𝜏, 
where 𝑡𝑡 is an arbitrary integer and 0 < 𝜏𝜏 < 1. For simplicity 
of notation, without loss of generality, we assume 𝑦𝑦� = 1. 

The most common method is to use fast algorithms such 
as FFT/IFFT to perform interpolation [1]. However, using 
FFT/IFFT for interpolation has the following problems: 

 The number of samples (the number of FFT points) has 
to be a power of 2. 

 The computational cost is proportional to the number 
of FFT points. 

 Interpolation for arbitrary 0 < τ < 1 is impossible. 

In this paper, we propose an interpolation scheme based 
on cubic spine to address these restrictions. 

 
Fig. 1. Finding an interpolation sample between 𝑦𝑦� and 𝑦𝑦��� 

B. Assumptions 
To make the problem simpler, a number of assumptions 

are made. 

 Uniform sampling interval: Cubic spline interpolation 
is a versatile operation and works equally well for non-
uniform sampling intervals. However, the discrete-
time signals found in wireless communications are 
uniformly sampled signals, and thus we focus on 
signals with uniform sampling intervals. 

 Six consecutive samples are available, where 3 
samples are on the left-hand side of the interval of 
interest and three samples are on the right-hand side of 
the interval of interest as illustrated in Fig. 1. 

II. CUBIC SPLINE INTERPOLATION 

A. Spline segmentation of a curve 
Cubic spline interpolation works by first dividing a curve 

into segments and then finding a cubic polynomial that best 
fits for each segment [2]. In this paper, we assume all 
segments are of equal length because that is the case in all 
wireless communication systems. 

Fig. 2 a) shows an example of a conventional segmentation 
scheme of 𝑓𝑓𝑦𝑓𝑓)  with three segments and 4 control points 
𝑦𝑦� = 𝑓𝑓𝑦𝑡𝑡 − 1 + 𝑓𝑓), 𝑓𝑓 = 0, 1, ⋯ , 𝑖. 

 Segment 0: 𝑓𝑓 𝑥 𝑥𝑡𝑡 − 1, 𝑡𝑡𝑥 

 Segment 1: 𝑓𝑓 𝑥 𝑥𝑡𝑡, 𝑡𝑡 + 1𝑥 

 Segment 2:  𝑓𝑓 𝑥 𝑥𝑡𝑡 + 1, 𝑡𝑡 + 2𝑥 

The curve 𝑓𝑓𝑦𝑓𝑓)  can be constructed by piecing the 
segments together. Let 𝑓𝑓�𝑦𝑓𝑓), 𝑓𝑓�𝑦𝑓𝑓), and 𝑓𝑓�𝑦𝑓𝑓) be segment 0, 
1, and 2 of 𝑓𝑓𝑦𝑓𝑓), respectively, then 𝑓𝑓𝑦𝑓𝑓) can be written in 
terms of the segments as follows. 

𝑓𝑓𝑦𝑓𝑓) = 𝑓𝑓�𝑦𝑓𝑓 − 𝑦𝑡𝑡 − 1)) +  𝑓𝑓�𝑦𝑓𝑓 − 𝑡𝑡) +  𝑓𝑓�𝑦𝑓𝑓 − 𝑦𝑡𝑡 + 1)) 
where 𝑡𝑡 − 1 𝑚 𝑓𝑓 𝑚 𝑡𝑡 + 2, and 
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Note that the segments 𝑓𝑓�(𝑥𝑥𝑥, 𝑓𝑓�(𝑥𝑥𝑥, and 𝑓𝑓�(𝑥𝑥𝑥 are defined 
only for 0 ≤ 𝑥𝑥 ≤ 𝑥, and are zero elsewhere. 

 
Fig. 2. Segmentation in the original cubic spline interpolation. 

There are 4𝑁𝑁 𝑁 4 𝑁 𝑁 𝑁 𝑥𝑁  coefficients to solve for, 
where 𝑁𝑁 is the number of segments. The coefficients can be 
calculated by solving a system of 4𝑁𝑁  linear equations 
obtained from the following continuity conditions. 

 𝐶𝐶� continuity: Each segment must pass their control 
points (i.e., 𝑓𝑓�(0𝑥 𝑁 𝑦𝑦� , 𝑓𝑓�(𝑥𝑥 𝑁 𝑦𝑦��� , 𝑖𝑖 𝑁 0𝑖 𝑥𝑖 𝑁 , 
when 𝑁𝑁 𝑁 𝑁 ), from which we obtain 𝑁𝑁𝑁 𝑁 𝑁 
equations. 

 𝐶𝐶� continuity: The segments must have the same slope 
where they meet. That is, 𝑓𝑓�

�(𝑥𝑥 𝑁 𝑓𝑓���
� (0𝑥, 𝑖𝑖 𝑁 0𝑖 𝑥, 

from which we obtain 𝑁𝑁 𝑁 𝑥 𝑁 𝑁 equations. 

 𝐶𝐶�  continuity: The segments must have the same 
curvature where they meet. That is, 𝑓𝑓�

��(𝑥𝑥 𝑁 𝑓𝑓���
�� (0𝑥, 

𝑖𝑖 𝑁 0𝑖 𝑥, from which we obtain 𝑁𝑁 𝑁 𝑥 𝑁 𝑁 equations. 

 Two more equations: The missing 2 equations can be 
obtained by providing first derivative at either ends of 
the curve. That is, 𝑓𝑓�

�(0𝑥 𝑁 𝑆𝑆� and 𝑓𝑓�
�(𝑥𝑥 𝑁 𝑆𝑆�. 

In this conventional scheme, 𝑆𝑆� and 𝑆𝑆� are not known. To 
address this problem, the proposed scheme uses two more 
control points as illustrated in Fig. 3, making it possible to 
apply cubic spline interpolation without the knowledge of  
𝑆𝑆� and 𝑆𝑆�. Fig. 3 (a) shows a curve 𝑓𝑓(𝑥𝑥𝑥 with three segments 
and 6 control points 𝑦𝑦� 𝑁 𝑓𝑓(𝑓𝑓 𝑁 𝑥 𝑓 𝑖𝑖𝑥, 𝑖𝑖 𝑁 𝑁𝑥𝑖 0𝑖 𝑖 𝑖 4. 

Similarly to the conventional cubic spline interpolation, 
the curve 𝑓𝑓(𝑥𝑥𝑥 can be constructed by piecing the segments 
together. Let 𝑓𝑓�(𝑥𝑥𝑥, 𝑓𝑓�(𝑥𝑥𝑥, and 𝑓𝑓�(𝑥𝑥𝑥 be segment 0, 1, and 2 
of 𝑓𝑓(𝑥𝑥𝑥, respectively, then 𝑓𝑓(𝑥𝑥𝑥 can be written in terms of the 
segments as follows. 

𝑓𝑓(𝑥𝑥𝑥 𝑁 𝑓𝑓�(𝑥𝑥 𝑁 (𝑓𝑓 𝑁 𝑥𝑥𝑥 𝑓  𝑓𝑓�(𝑥𝑥 𝑁 𝑓𝑓𝑥 𝑓  𝑓𝑓�(𝑥𝑥 𝑁 (𝑓𝑓 𝑓 𝑥𝑥𝑥 
where 𝑓𝑓 𝑁 𝑁 ≤ 𝑥𝑥 ≤ 𝑓𝑓 𝑓 𝑁𝑖 and 
 

 

 
(1) 

 
Note that the segment 𝑓𝑓�(𝑥𝑥𝑥 is defined for 𝑁𝑥 ≤ 𝑥𝑥 ≤ 𝑥, 

the segment 𝑓𝑓�(𝑥𝑥𝑥 is defined for 0 ≤ 𝑥𝑥 ≤ 𝑥, and the segment 
𝑓𝑓�(𝑥𝑥𝑥 is defined for 0 ≤ 𝑥𝑥 ≤ 𝑁, and are zero elsewhere. 

There are 4𝑁𝑁 𝑁 4 𝑁 𝑁 𝑁 𝑥𝑁  coefficients to solve for, 
where 𝑁𝑁 is the number of segments. The coefficients can be 

calculated by solving a system of 4𝑁𝑁  linear equations 
obtained from the following continuity conditions. 

 𝐶𝐶� continuity: Each segment must pass their control 
points (i.e., 𝑓𝑓�(𝑁𝑥𝑥 𝑁 𝑦𝑦�� , 𝑓𝑓�(𝑁𝑥 𝑁 𝑦𝑦� , and 𝑓𝑓�(0𝑥 𝑁
𝑦𝑦� , 𝑓𝑓�(𝑥𝑥 𝑁 𝑦𝑦��� , 𝑖𝑖 𝑁 0𝑖 𝑥𝑖 𝑁 , when 𝑁𝑁 𝑁 𝑁 ), from 
which we obtain 𝑁𝑁𝑁 𝑓 𝑁 𝑁 𝑁 equations. 

 𝐶𝐶� continuity: The segments must have the same slope 
where they meet. That is, 𝑓𝑓�

�(𝑥𝑥 𝑁 𝑓𝑓���
� (0𝑥, 𝑖𝑖 𝑁 0𝑖 𝑥, 

from which we obtain 𝑁𝑁 𝑁 𝑥 𝑁 𝑁 equations. 

 𝐶𝐶�  continuity: The segments must have the same 
curvature where they meet. That is, 𝑓𝑓�

��(𝑥𝑥 𝑁 𝑓𝑓���
�� (0𝑥, 

𝑖𝑖 𝑁 0𝑖 𝑥, from which we obtain 𝑁𝑁 𝑁 𝑥 𝑁 𝑁 equations. 

 
Fig. 3. Segmentation in the proposed cubic spline interpolation  

B. System of linear equations 
Let 𝑦𝑦� , 𝑖𝑖 𝑁 𝑁𝑥𝑖 𝑥𝑖 𝑖 𝑖 4, be the 6 discrete-time samples of 

𝑓𝑓(𝑥𝑥𝑥. Then, from the continuity conditions, we obtain 

 

 

(2) 

 
By substituting (1) into (2), (2) can be written in matrix 

form as follows. 
 

 

(3) 
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where 

 
 

Note that 𝐴𝐴�� can be written in terms of integers, which 
makes implementation of the scheme much easier. 

Since we are only interested in {𝑎𝑎�, 𝑏𝑏�, 𝑐𝑐�, 𝑑𝑑�}, equation (3) 
can be simplified as follows: 

 

 

(4) 

 
where 𝒜𝒜 is a (4 × 8) matrix whose elements are obtained 

from rows 4, 5, 6, 7 and columns 0, 1, 2, 5, 6, 9, 10, 11 of 
matrix 𝐴𝐴��. That is, 

 
Since 𝑦𝑦�  and 𝑦𝑦�  each appears twice in (4), (4) can be 

further simplified as follow. 

 

 

(5) 

where 

 
 

Note that the matrix ℬ  does not depend on the data 
samples and can be calculated in advance. Also note that the 
inner product of the first row of ℬ with another vector requires 
only a single scalar multiplication. 

C. Calculating intermediate points 
When 6 discrete-time samples are given as follows 
{𝑦𝑦�� = 𝑓𝑓(𝑚𝑚 𝑚 𝑚), 𝑦𝑦� = 𝑓𝑓(𝑚𝑚 𝑚 𝑚),⋯ , 𝑦𝑦� = 𝑓𝑓(𝑚𝑚 𝑚 𝑚)} 

 
from (5), the interpolation point 𝑓𝑓(𝑚𝑚 𝑚 𝑚𝑚) can be found by 

 

 
where 0 < τ < 𝑚. In general, if M interpolation points are 
required for {𝑚𝑚�, 𝑚𝑚�,⋯ , 𝑚𝑚�}, the interpolation points can be 
obtained by 

 

III. EVALUATION OF THE PROPOSED INTERPOLATION SCHEME 
Suppose we are trying to estimate the time of arrival of a 

synchronization signal, and assume that the cross-correlator 
output is an ideal sinc function oversampled by factor 2: 

 

𝑓𝑓(𝑛𝑛) = sinc �
𝑛𝑛 𝑚 𝑛𝑛�
𝑚

� 
 
where sinc(𝑛𝑛) = �����

��
 is a normalized sinc function, and 𝑛𝑛� is 

the arrival time normalized by the sampling interval 𝑇𝑇�. The 
objective is to estimate 𝑛𝑛� with high accuracy. 
𝑓𝑓(𝑛𝑛) is illustrated in Fig. 4 

 
Fig. 4. The cross-correlator output signal 𝑓𝑓(𝑛𝑛). 

Without interpolation, the estimated time of arrival is �̂�𝑛� =
𝑚 . For a more accurate estimation of the arrival time, we 
perform interpolation with up-sampling factor 10 using the 
proposed scheme, whose result is illustrated in Fig. 5. With 
interpolation, the peak is 0.9954 at �̂�𝑛� = 𝑚.𝑚. Note that the 
interpolation factor 10 is not a power of 2. The interpolation 
factor 2 was chosen to demonstrate that the interpolation 
factor is not limited to a power of 2 in the proposed scheme. 

 
Fig. 5. Interpolated 𝑓𝑓(𝑛𝑛) at 𝑛𝑛 = 𝑚.0 𝑚 𝑚𝑚, where 𝑚𝑚 = 0.𝑚𝜏𝜏, 𝜏𝜏 = 𝑚, 𝑚,⋯ , 𝑖. 

IV. CONCLUSION 
We have proposed an efficient cubic spline interpolation 

scheme tailored for wireless communication systems, with a 
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focus on OFDM systems. The conventional cubic spline 
interpolation cannot be used because the slopes at the 
boundaries of f(x) are not available in wireless communication 
systems. To address this problem, the proposed scheme uses 
two more control points making it possible to apply cubic 
spline. The proposed scheme is significantly more efficient in 
terms of computational complexity compared to the conven-
tional interpolation schemes based FFT/IFFT. Furthermore, 
the proposed scheme allows arbitrary time precision by 
making it possible to choose any point between two samples 
for interpolation. The performance evaluation showed that the 
estimation error of the interpolated sample was less than 0.5% 
in a simple scenario without noise. However, the proposed 
scheme uses only 6 adjacent samples to perform interpolation, 
and thus susceptible to low SNR. Because of this, application 
of the proposed interpolation scheme can be limited. One area 
of application of the proposed scheme is high precision time 
of arrival estimation as illustrated in the example. By the 
cross-correlator, the noise signal is smoothed over a period of 
time (the span of the cross-correlator) and the output of the 
cross-correlation has significantly higher SNR compared to 

the signal (pulse compression gain). We would like to further 
explore the possibility of applying this scheme to semantic 
communication, which is more focused on conveying 
semantic information not bit-level information. 
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