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Abstract— In Antarctica, many studies in various fields 
are conducted every year. Some of these studies use sensors 
to collect relevant data for scientific research. However, 
Antarctica's lack of communication resources makes it 
difficult to automate this data collection. In most cases, this 
collection is done manually and the time and space of the 
study are limited. Over the past few years, several 
alternatives for deploying remote wireless sensor networks 
in Antarctica have been explored. Therefore, in this paper, 
the analysis of the delay-tolerant network was performed 
based on the partial ΔΔ-synchronized proof-of-stake (PoS) 
blockchain model. 82% (=1-1/(2e)) of active honest nodes 
must satisfy the quorum to ensure the security of the proof-
of-stake blockchain. If the adversary has less than 18% of 
the total stake and sets the overall growth rate low, the 
longest chain protocol is secure. However, as Nakamoto 
argues in proof-of-stake blockchain protocols, an adversary 
cannot secure the longest-chain protocol at less than 50% of 
total stake. In this study, we analyzed how this network 
delay and balance attack could affect the proof-of-stake 
consensus protocol in order to find a way for an adversary to 
secure the longest-chain protocol at less than 50% of the 
total stake.  

Keywords— Proof-of-stake, IoET, Consensus Algorithm, 
Antarctica 

I. INTRODUCTION

The communication network in the extreme cold 
region environment must collect a large amount of data 
according to the power consumption limits of fixed sensors 
and the changing position of moving unmanned 
autonomous robots. As an alternative to providing these 
services, the opportunistic technology of delay-tolerant 
networks (DTNs) can be used to achieve this challenging 
goal. Due to the characteristics of these wireless 
communication networks, these networks may cause 
congestion and packet loss [1]. We request these network 
protocols analysis and evaluation of candidate 
technologies that can satisfy the most suitable 
requirements for reliability and goal to find a way to solve 
problems in these network congestion and packet loss 
situations. 

In spite of various problems in DTN, the data collected 
through multiple paths must be agreed upon as the same 

data value in all nodes. These consensus techniques can be 
classified into two main types: proof-based consensus and 
Byzantine consensus [2]. The first group is related to 
blockchain technology where all participants compete with 
each other to mine blocks, the most commonly used 
protocols being proof-of-work, proof-of-stake, and variants 
thereof. The main drawback of applying these protocols 
for IoET (Internet of Extreme Things) is that the devices 
usually have low hardware resources and low processing 
power, which makes mining operations on the blockchain 
extremely difficult. Byzantine-based protocols, on the 
other hand, implement voting-based techniques to reach 
consensus without competing with each other, which 
generally consumes less resources. However, the main 
drawback of Byzantine-based techniques is the large 
messages that must be transmitted across the network to 
reach agreement. In extreme conditions such as IoET, we 
face a challenging problem of reducing the complexity of 
the communication network. 

As a distributed ledger technology to overcome this 
waste of computing power and communication, proof-of-
stake is an energy-efficient alternative. To analyze the 
security guarantee of this distributed ledger technology, [3] 
started the blockchain security analysis by defining the 
main attributes of common chain prefix, chain quality, and 
chain growth. When applying the proof-of-work protocol 
to the lock-by-step-continuous-circulation model for 
solving the longest chain protocol, the common chain 
prefix property is very difficult to interpret. Then, if the 
number of attacker blocks in the long window technique is 
uniquely smaller than the number of successful honest 
blocks, the guarantee condition for stability will be met [3]. 
A similar block-aggregation analysis was performed in the 
case of a partially ∆-synchronous model [4]. 

In this paper, we will evaluate the safety of the longest 
blockchain protocol in terms of the partial ∆-synchronous 
model for proof-of-stake blockchain protocols. However, 
in general PoS blockchain protocols, the longest chain 
protocol cannot be secured by an adversary with less than 
50% of the total stake, as Nakamoto argued [5]. In this 
study, to find the scheme to safely keep the longest chain 
protocol under 50% of adversary’s stake, we analyzed how 
it can affect the proof-of-stake consensus protocol in the 
event of network delay. 
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II. ANALYSIS OF SECURITY GUARANTEE CONDITIONS OF 
PROOF-OF-STAKE CONSENSUS ALGORITHM

An important property of the longest chain protocol 
used to maintain distributed ledgers in an public 
environment is security. An adversary privately grows a 
private chain to outperform the longest public blockchain, 
replacing it when the depth of one block is longer on the 
main blockchain. If λa and λh are the creation rates of 
attackers and honest nodes, respectively, it is obvious from 
the large number law that if λh < λa, no matter how long 
the epoch depth k is, the attacker will succeed with a high 
probability. Conversely, if λh < λa, the probability of 
success of the attack decreases exponentially with k. The 
conditions for safety in a partial ∆-synchronous network 
environment are as follows [6]. 

                        (1) 

where 1+λh∆ is the effect of network delay on the honest 
chain's growth rate. λ(=λh+λa) is the total growth rate and 
λ∆ is the number of blocks produced by network delay.
Solving the above equation leads to Nakamoto's core 
argument [5]. If the adversary has less than 50% of the 
total stake and sets the overall growth rate low, the longest 
chain protocol will be secure. Increasing the growth rate 
more aggressively to speed up block generation reduces 
this security threshold. Therefore, the above formula is the 
relationship between security and block generation speed 
including communication network delay. For a certain 
time slot t, λh and λa respectively yield the following 
conditions. 

              (2) 
By rearranging the above inequality in terms of ∆fλh, the 
following equation can be obtained. This can obtain an 
upper bound on the added to which the adversary’s 
participation expectation value pf is amplified by the delay 
∆ in unit time t. 

                             (3) 
Here, since λat = pf, the above equation can guarantee the 
security of the transaction only when signatures of more 
than 2/3 of total nodes are honest. If n > 3f is satisfied, the 
above expression must satisfy the following condition. 

                       (4)  
This is the same as the condition that the security of the 
proof-of-stake blockchain can be guaranteed only when a 
2/3 quorum of active honest nodes is satisfied [6].

On the other hand, we provide an example for the 
adversary forking in terms of Branching Random Walk 
(BRW) [7]. When Ik = {i1, ..., ik} as a collection of k-tuples 
for positive integers, I = ∪k>0Ik. We can show elements of 
I as the labeling of the vertices of an infinite tree rooted. 
At this time, Ik represents the vertices of the k-generation 
in the branch by numbering as follows: vertex v = (i1, ..., 
ik) ∈ Ik is the vertex of the number (label) k-1 (i1, ... , ik−1) 
is the ikth child. An example of numbering can be 
represented as in Figure 1. For j = 1, ..., k, if vj = (i1, ..., ij) 
is defined, then vj becomes the parent of v at number j (vk

= v). For convenience of notation, v0 = 0 is set as the root 
of the branch. 

 

Figure 1. An example of labeling in a branching random 
walk machine. 

Let the following expression {tv}v ∈ I be an 
independent and identically distributed set of exponential 
random variables with the growth rate as a parameter λa. 
For vertex v = (i1, ..., ik) ∈ Ik, set Tv=∑j≤ikt(i1,…,ik-1, j) and 
Wv=∑j≤kTvj for the case vj = (i1, ..., ij) is such that vj

measured after the occurrence of vj−1 appears is the 
waiting time until v and Wv is the average waiting time 
until the appearance of v. The definition of the Laplace 
transform with a random variable T with an independent 
identity distribution (i.i.d.) is as follows. 

               (5) 

If we define the log Laplace transform for , 
we get the following equation [7, Theorem 1.4]. 

   (6)
The minimum value of the average waiting time Wv until 
the appearance of v can be defined as the following 
equation.

                    (7) 
According to Reference [7, Theorem 1.3], the minimum 
value of the average waiting time is the limit value of the 
log Laplace transform of the average waiting time Wv and 
can be expressed as the following equation. 

     (8)  
The above equation is succinctly summarized as follows 
when substituted with the Laplace transform value of an 
exponential random variable T having an independent 
identity distribution. 

       (9) 

Therefore, assuming that the adversary’s attack is a branch 
random walking machine, it can be showed that the growth 
rate amplify to eλa at the depth of T0(t). Thus, to overcome 
this, the condition of the following equation has to be 
satisfied. 
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                                (10) 
If λh = eλa in the above formula, eλa < 0.5 must be satisfied. 
This is a condition in which 82% (=1-1/(2e)) of active 
honest nodes must satisfy the quorum to ensure the 
security of the proof-of-stake blockchain. As long as the 
adversary sets it low, below 18% of the total stake in the 
blockchain, the longest chain protocol will be secure. 

III. ANALYSIS OF PROPOSED PERIODIC D-TIME FORKING 
DELAYED PROOF-OF-STAKE SCHEME

In the PoS blockchain protocol, a technique can be 
proposed to prevent the block from forking periodically for 
a certain period of time delay d. 

Since the branch random walk starts labeling at the 
vertices of the tree after a period d delay, the logarithmic 
Laplace transform of the average waiting time Wv can be 
expressed as the following equation [7]. 

   (11) 
Simplifying the above expression, it can be expressed by 
converting it to the following expression. 

                        (12) 

The minimum value of the average waiting time is the 
limit value of the logarithmic Laplace transforms of the 
average waiting time Wv, and the following equation is a 
stable state expression. 

                         (13) 

This above equation can be simplified as follows when s = 
eλa. 

                          (14) 

In the above formula, the d value, which is a positive 
number that can change the minimum value of the average 
delay time, can be represented as the following equation. 

                         (15) 

In the proof-of-stake blockchain protocol, if the branching 
of a blockchain is delayed by a certain period d, the 
minimum average waiting time becomes 1/λa, so the 
adversary’s growth rate slows down to λa. Therefore, as 
Nakamoto argues in proof-of-stake blockchain protocols, 
we can find a constant delay period d that allows an 
attacker to safely hold the longest blockchain protocol at 
less than 50% of the overall growth rate. 

IV. SIMULATION RESULTS

Figure 2 is the result of simulating the upper limit of 
the security area for the adversary’s fraction expansion 
when an adversary attempts a balanced attack in a 
communication network that causes delay. From this 
simulation, it can be figured that the upper bound and 
security area of the adversary’s fraction  β varies greatly 
depending on forking delay (d = 4.7) and attack type (d = 1, 
balanced attack) rather than the effect of pure adversary 
growth rate (λa). This greatly reduces the stability of the 
delay-tolerant IoET network and reduces the safe area. It 
was confirmed that the security region was greatly 
improved when the periodic forking delay (d) was adjusted 
to overcome the attacker's influence. 

Figure 2. The upper limit and security area of the 
adversary fraction β when forking is periodically blocked 
for a certain period of time delay d in the network delay 
situation. 
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