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Abstract—Self-organizing network (SON) has emerged as a
promising solution to manage dynamic and complex wire-
less/mobile networks without excessive manual intervention. As
a key function of SON, mobility robustness optimization (MRO)
aims to prevent radio link failure (RLF) for user equipment (UE)
by adjusting handover-related parameters. Although there are
several existing studies on MRO, previous studies have limitations
in coping with various UE mobility patterns. Additionally, since
parameter adjustments are performed on a per-cell basis, detailed
adjustments based on individual UE situations become unfeasible.
To overcome these limitations, we propose a deep reinforcement
learning (DRL)-based MRO scheme where parameter adjustment
sets are evaluated by a multi-agent double deep Q-network (MA-
DDQN). Evaluation results demonstrate that the proposed DRL-
based MRO scheme can reduce RLFs by up to 45. 7% compared
to other MRO schemes and completely prevent handover ping-
pong events.

Index Terms—Self-Organizing Networks, Mobility Robustness
Optimization, Radio Link Failure, Handover Ping-Pong, Deep
Reinforcement Learning.

I. INTRODUCTION

Wireless networks have become increasingly complex due
to the coexistence of various wireless access networks. In such
a complex network environment, passive network management
requires significant resources. To address this challenge, a self-
organizing network (SON), which enables automatic network
management, has emerged [1].

Among SON technologies, mobility robustness optimization
(MRO) is a function that aims to provide a stable connection
to user equipment (UE). If proper handovers do not occur
when the UE is moving, the signal strength of the cell
may be reduced, resulting in radio link failure (RLF) [2],
and the connection between the cell and UE is lost. For
stable connections, it is important to prevent RLFs, and MRO
achieves this by adjusting the relevant parameters. The key
parameters of MRO are 1) the handover margin (HOM) and 2)
time-to-trigger (TTT) [3]. HOM adjusts the threshold of signal
strength differences between two cells for the occurrences of
the handovers, and TTT is the minimum time required to
execute the handover after meeting the handover condition.

Several studies on MRO function have already been carried
out. In [4], the author suggests a heuristic algorithm that
adjusts the HOM of each cell, based on the RLFs that
occur in each cell during a specific period. However, since

parameter adjustments are executed only on the basis of the
RLF occurrences, it is difficult to immediately respond to
dynamic mobility patterns.

To solve this problem, [5] presents a Q-learning-based
algorithm so that the central agent learns how to adjust the
parameters corresponding to each mobility pattern and applies
them before RLFs occur. But in [5], each mobility pattern
was classified only by the speed of UEs, so it could not fully
respond to the various mobility patterns. Additionally, since
both [4] and [5] adjust each parameter in a cell basis, there is a
limitation to preventing RLF, an event that occurs in individual
UE.

In this paper, we propose a deep reinforcement learning
(DRL)-based MRO scheme where parameter adjustment sets
are evaluated by a multi-agent double deep Q-network (MA-
DDQN). By assigning each MA-DDQN agent to each UE, it is
possible to learn more accurately the mobility patterns of UEs
and adjust the parameters to prevent RLFs, an event that occurs
for each UE. The proposed scheme uses more information to
distinguish mobility patterns, which allowed more detailed and
accurate parameter adjustment for each mobility pattern. Also,
TTT and HOM are individually adjusted for each UE, allowing
them to be fine-tuned based on the specific situations of each
UE.

The remainder of this paper is organized as follows. In
Section II and Section III, the system model and the proposed
formulation of the DRL-based MRO scheme are described,
respectively. After that, the evaluation results are given in
Section IV and followed by the concluding remarks in Section
V.

II. SYSTEM MODEL

Fig. 1 illustrates the system model of the DRL-based MRO
scheme. The system model consists of three components: UE,
eNB, and the MRO controller.

Within a system environment, UEs continuously gather
measurements during their movement and transmit these mea-
surements to the connected eNB at a particular time step.
The eNBs then relay these measurements to the central MRO
controller. The MRO controller is designed as a multi-agent
system, with DDQN agents assigned to each UE. Each DDQN
agent is responsible for learning the UE assigned to it. After
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Fig. 1: System model.

learning based on measurements, the DDQN agents determine
parameter adjustments. Subsequently, the MRO controller
transmits these parameter adjustments to the respective UEs
through the eNBs, and the UEs then apply the received
adjustments.

In this DRL-based MRO system, the A3 event-based han-
dover is used. Each agent learns to make adjustments to the
parameters that lower the probability of RLFs for measure-
ment. When parameter adjustments are applied, the RLFs are
prevented in advance.

III. DRL-BASED MRO SCHEME

In this section, we present the DRL-based MRO scheme,
which aims to find optimal parameter adjustments to prevent
RLFs in moving UEs. For this, each agent uses measurements
from the assigned UE as the state st, and computes optimal
parameter adjustments at to maximize the reward rt. The
reward rt is an indicator of the handover performance
achieved by at. Consequently, the DRL-based MRO scheme
comprises three elements: state, action, and reward. First, we
use four information as a state.

st = {RSRP t
Cur, SINRt

Avg, Distancet, BestCellt } (1)

Current reference signal received power RSRP t
Cur and

average signal-to-interference-plus-noise-ratio SINRt
Avg are

used to indicate the strength and quality of the signal that the
UE receives from the serving cell. Meanwhile, the distance to
eNB, Distancet, provides the approximate location of the UE
from the base station. Finally, BestCellt is a value indicating
whether the RSRP value received from the currently connected
cell is the maximum. Agents combine this information to iden-
tify location and mobility patterns and then perform parameter
adjustments to prevent RLFs based on this information. Our
system model employs two handover parameters as actions in
this process.

at = {HOM t, TTT t } (2)

The occurrences of handovers can be controlled by manipu-
lating these values, and the pair of parameters is associated

Parameter Value
Number of eNBs 9
Number of UEs 8

Number of coverage holes 8
Mobility model Waypoint mobility

Distance between eNBs (m) 200
UE velocity (m/s) 5, 10, 30 ,60

Total step / step time (s) 60 / 0.5
HOM (dB) 0.0 - 30.0
TTT (ms) 0 - 5120

TABLE I: Simulation parameters.

with the A3-based handover condition. The condition of the
a3 handover is given as RSRP t

T −RSRP t
S > HOM t [6].

RSRPT and RSRPS are values received from target cells
and serving cells, respectively. When the difference between
the two values exceeds the HOM, a handover is triggered.
Therefore, increasing this HOM, the occurrences of handovers
can be prevented. Conversely, by decreasing it, handovers
can be induced to occur. TTT is the time required before
handover is executed after the above A3 condition is satisfied.
By manipulating this, it is possible to adjust the timing of
handover. These two parameters are individually adjusted by
the agents to prevent RLFs in each UE. Finally, we define
reward as a performance indicator of parameter adjustments to
prevent RLFs. The formula of reward is presented as follows.

rt = −(w1 ·N t
R + w2 ·N t

P ) + w3 · Throughputt (3)

In (3) N t
R and N t

P mean the number of RLFs and handover
ping-pongs (PPs), respectively. PP refers to the frequent han-
dover between two adjacent cells in a short period of time.
PP is also considered as a reward because it can disrupt the
stability of the communication environment. In the case of
throughput, the occurrences of handovers can be prevented
at all by adjusting the parameters to lower N t

P . As a result,
the throughput of the entire system can be reduced, so the
throughput is also considered. Finally, w1, w2, and w3 are the
weights of each element. In most cases, w1 > w2 , since RLFs
are more fatal to stable communication than PPs [7]. In this
work, w1 = 0.4, w2 = 0.2 and w3 = 0.4.

IV. SIMULATION RESULTS

For performance evaluation, we use ns3-gym, which com-
bines the ns-3 network simulator and the OpenAi Gym re-
inforcement learning toolkit [8]. In the simulation scenario,
we initially deploy eNBs in a grid pattern, with coverage
holes-where signal strength is rapidly diminished-randomly
positioned between the eNBs. Subsequently, we established
a square pathway within the overlapping coverage area of
multiple eNBs. On this square boundary, UEs are randomly
placed and move at randomly allocated velocities. Table 1
summarizes the simulation parameters.

The four algorithms for comparison are as follows: 1)
No MRO, 2) MRO ABC, 3) QMRO, and 4) proposed scheme.
No MRO is an algorithm that does not manipulate any param-
eters. MRO ABC and QMRO are algorithms presented in [4]
and [5], respectively.
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Fig. 2: Number of RLFs occurrences

Fig. 3: Number of PPs occurrences

In Fig. 2, the largest number of RLFs occurs in No MRO,
followed by MRO ABC and QMRO. The proposed scheme
shows the smallest RLFs. Compared to No MRO, the RLFs
in the proposed scheme decreased by 34%, and 54% and 63%
respectively compared to MRO ABC and QMRO. and also in
Fig. 3, the proposed scheme showed the best performance, and
PPs do not occur at all. In the case of MRO ABC, the RLFs
decreased, but the PPs increased, which seems to have resulted
in more PPs due to parameter adjustments to reduce RLFs
inducing more handovers. The QMRO and proposed scheme
decreased in both RLFs and PPs. However, the proposed
scheme showed better performance, since individual agents
individually adjusted the UE parameters.

V. CONCLUSION

To ensure stable communication with mobile UEs, it is
crucial to minimize RLFs. For this purpose, it is necessary
to induce appropriate handovers. We propose a DRL-BASED
MRO SCHEME in which each DDQN agent learns and de-
termines the handover parameter adjustments. The evaluation
results show that the proposed DRL-based MRO scheme can
reduce RLFs by up to 45. 7% better compared to other MRO
schemes and completely prevent PPs.
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