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Abstract—We propose a technique to solve the problem 

of graph multi coloring, which is a problem 

corresponding to channel allocation problem, with the 

quantum approximate optimization algorithm(QAOA). 

QAOA is an algorithm that solve an optimization 

problem. Among the optimization problems, this 

algorithm is specialized as solving the quadratic 

unconstrained binary optimization(QUBO) problems. It 

is designed to find approximate solutions to combinatorial 

optimization problems by leveraging quantum resources. 

In general, it is evaluated to have strengths in optimizing 

the base of optimal path exploration, small factor 

resolution, and mass data exploration. The study on 

coloring problem using digital algorithm has solved the 

problem of coloring by replacing the graph with simple 

graph or applying algorithm or reducing the number of 

nodes. Despite these efforts, however, the digital 

algorithm that solves the coloring problem studied so far 

has not achieved satisfactory performance by some 

limitations. Therefore, in order to overcome these 

limitations, this paper will show the result of solving multi 

coloring problem by reducing initial state dimension of 

the QAOA 

I. INTRODUCTION 

Quantum Approximate Optimization 

Algorithm(QAOA) is a quantum algorithm designed to 

solve the combinatorial optimization problems using 

near-term Noisy Intermediate Scale Quantum(NISQ) 

devices[1]. One of the challenging problems in this 

algorithm is the coloring problem, also known as graph 

coloring problem[2]. Graph coloring problem involves 

assigning colors to the vertices of given graph (𝐺𝐺, 𝐸𝐸). 

The way is that no two adjacent vertices are assigned 

same color[3-5]. The goal is to assign all colors to the 

vertices of graph while adhering to the adjacency 

constraint. In this paper we propose the scheme for 

solving multi coloring problem which assigns the multi 

colors to the each vertices by QAOA. We also propose 

a quantum circuit method that reduces the QAOA level 

by making the corresponding input data. 

II. PREVIOUS WORKS 

In this section, we introduce the QAOA and multi 
coloring problem. 

A. QAOA(Quantum Approximate Optimization 

Algorithm) 

In defining the problem in terms of classical problem, 
we use 𝑁𝑁  bit binary vector 𝒛𝒛 = (𝑧𝑧1, … , 𝑧𝑧𝑁𝑁) ∈
{±1}𝑁𝑁binary vector 𝑥𝑥𝑖𝑖 which is a vector for maximizing 
the classical objective function and define following 
function. Furthermore, we define the following cost 
function as 𝐻𝐻𝐶𝐶,  which transforms it into Hamiltonian. 

QAOA  is designed by substituting the value obtained 
through the 𝛼𝛼 −objective function of the above equation 
into the approximate ratio to maximize. Based on this 
method, quantum algorithm encode the problems by 
converting objective functions into quantum 
Hamiltonian. 

We first prepare the input data of the algorithm using 

the Hadamard quantum operator to create |+⟩⊗𝑛𝑛. This 
input data corresponds to the mixing Hamiltonian, 𝐻𝐻𝑀𝑀 
also called mixer.  

The operator 𝜎𝜎𝑖𝑖
𝑥𝑥  corresponds to the Pauli-X operator 

applied to the qubit associated with vertex 𝑖𝑖. Then the 
cost function corresponds to the problem Hamiltonian, 
𝐻𝐻𝐶𝐶. Once the problem Hamiltonian is defined,  

The quantum operator 𝜎𝜎𝑖𝑖
𝑧𝑧  represents the Pauli-Z 

operator applied to the qubit corresponding to vertex 𝑖𝑖. 
Based on these two types of Hamiltonians, the algorithm 
proceeds through a computational process to design the 
wavefunction as follows : 

 𝐶𝐶(𝒛𝒛) = ∑ 𝐶𝐶𝛼𝛼(𝒛𝒛)
𝛼𝛼

 
(1) 

 𝐻𝐻𝑀𝑀 = ∑ 𝜎𝜎𝑖𝑖
𝑥𝑥

𝑖𝑖
 

(2) 

 𝐻𝐻𝐶𝐶 = ∑
𝑤𝑤𝑖𝑖𝑖𝑖
2 (𝐼𝐼 − 𝜎𝜎𝑖𝑖

𝑧𝑧𝜎𝜎𝑖𝑖
𝑧𝑧)

𝑖𝑖,𝑖𝑖
 

(3) 
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|𝜓𝜓(𝛾𝛾, 𝛽𝛽)⟩ = 𝑒𝑒−𝑖𝑖𝛽𝛽1𝐻𝐻𝑀𝑀 𝑒𝑒−𝑖𝑖𝛾𝛾1𝐻𝐻𝐶𝐶 … 𝑒𝑒−𝑖𝑖𝛽𝛽𝑝𝑝𝐻𝐻𝑀𝑀 𝑒𝑒−𝑖𝑖𝛾𝛾𝑝𝑝𝐻𝐻𝐶𝐶 |𝜓𝜓0⟩ 
(4) 

The values 𝛾𝛾, 𝛽𝛽  are variables obtained through 
parameter optimization on a classical computer. Using 
the designed wavefunction, the expectation value for 𝐻𝐻𝐶𝐶 
is obtained, and the obtained approximation from the 
executed algorithm is compared. This iterative process 
involves repeatedly performing, refining the values of 𝛾𝛾 
and 𝛽𝛽 , and comparing with the approximation ratio 
achieved through the algorithms’ execution. 

 𝐹𝐹(𝛾𝛾, 𝛽𝛽)  is the expected value of the quantum state 
obtained after applying quantum operations. This value 
is computed by substituting into the cost function using 
a classical computer. Finally, QAOA unfolds by 
designing optimized variables (𝛾𝛾, 𝛽𝛽)  on a classical 
computer. Through wavefunction calculations, these 
variables yield optimized expected values, thus 
completing the optimization process. 

B. Multi coloring problem 

Graph coloring problem can be broadly divided into 

multi-coloring and single-coloring problems. In the 

context of graph theory, multi-coloring refers to 

situations where nodes in a graph can be colored with 

more than one color, while single-coloring implies that 

nodes can only be colored with one specific color. 

Given 𝑘𝑘 coloring graph 𝐺𝐺(𝑉𝑉, 𝐸𝐸), we define  

that assign different values to adjacent vertices 

 

III. PROPOSED METHOD 

 

Given graph 𝐺𝐺(𝑉𝑉, 𝐸𝐸), first we assume that the set of 

available total colors for coloring is denoted as 𝐾𝐾 ∈
{1, … , 𝑘𝑘}  and the set of vertices is denoted as 𝑉𝑉 ∈
{1, … , 𝑛𝑛}. Similarly, each node is replicated according 

to the size of coloring set.  Each vertex set is assigned 

to 𝑉𝑉 = {𝑉𝑉1, 𝑉𝑉2, … , 𝑉𝑉𝑛𝑛} and colorable set of each vertex 

to 𝜙𝜙𝑉𝑉1
𝐾𝐾 = {𝜙𝜙𝑉𝑉1

1 , 𝜙𝜙𝑉𝑉1
2 , … , 𝜙𝜙𝑉𝑉1

𝑘𝑘 }.  

 

As shown in above, 𝑖𝑖, 𝑗𝑗 is adjacent vertex index. This 

means every copies of each vertex have to satisfy the 

above conditions. We will mention later about this 

condition in cost function Hamiltonian. 

Then, the total number of qubits we have to assign is 

𝑘𝑘𝑛𝑛 that we have to prepare the number of qubits. Let’s 
consider an example of the input states. When the 𝑛𝑛-th 

node is assigned 2 colors out of the total 3 available 

colors, it is composed of two cases combined together. 

The first case involves adding a new color to the 

scenario where only 1 color out of the total 2 colors is 

assigned. The second case involves adding a new color 

and not assigning it in the situation where 2 colors out 

of the total 2 colors are already assigned. Therefore, the 

following superimposed states are generated: 

|𝜓𝜓𝑛𝑛,3,2〉 = √2
3 |𝜓𝜓𝑛𝑛,2,1〉|1〉 + √1

3 |𝜓𝜓𝑛𝑛,2,2〉|0〉 

          = √2
3 ∙ √1

2 (|01〉 + |10〉) ⊗ |1〉 + √1
3 (|11〉) ⊗ |0〉 

(9) 

 

Fig. 1 Example of three vertices multi coloring problem 

 

Before applying the algorithm, we prepare the input 

state as W-state. When the total number of colors 

available for coloring in a given graph is 𝑘𝑘, and the 𝑛𝑛-

th node 

|𝜓𝜓𝑛𝑛,𝑘𝑘,𝑙𝑙⟩ = |𝜓𝜓𝑘𝑘,𝑙𝑙1⟩ ⊗ |𝜓𝜓𝑘𝑘,𝑙𝑙2⟩ ⊗ … ⊗ |𝜓𝜓𝑘𝑘,𝑙𝑙𝑛𝑛⟩        (10) 

can be colored with 𝑙𝑙 different colors. |𝜓𝜓𝑘𝑘,𝑙𝑙1⟩ is the state 

where denotes 𝑙𝑙  of 𝑘𝑘  colorable 𝑛𝑛-th vertex state. The 

input vector states can be prepared by superposition 

state |𝜓𝜓𝑛𝑛,𝑘𝑘,𝑙𝑙⟩ 
 

|𝜓𝜓𝑛𝑛,𝑘𝑘,𝑙𝑙⟩ = 1
√𝐶𝐶𝑘𝑘,𝑙𝑙

(|1 … 10 … 0⟩ + ⋯ + |0 … 01 … 1⟩) 

(11) 

 In the given conditions, a total of state are 

superposition with equal probability. 

 

These states are composed of 𝑘𝑘  qubits, and among 

them, 𝑙𝑙 qubits are assigned value of 1. This means each 

quantum states has hamming weight of 𝑙𝑙. 
The choice of input state can affect the form of the 

mixing Hamiltonian used in the algorithm. In our case, 

we have chosen to apply XY mixer. XY mixer is 

expressed as follows :  

 

 𝐹𝐹(𝛾𝛾, 𝛽𝛽) = 〈𝜓𝜓(𝛾𝛾, 𝛽𝛽)|𝐻𝐻𝐶𝐶|𝜓𝜓(𝛾𝛾, 𝛽𝛽)〉 (5) 

 𝜙𝜙 ∶ 𝑉𝑉 → {1, … , 𝑘𝑘} (6) 

 {𝑢𝑢, 𝑣𝑣} ∈ 𝐸𝐸 → 𝜙𝜙(𝑢𝑢) ≠ 𝜙𝜙(𝑣𝑣) (7) 

 {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 → 𝜙𝜙𝑉𝑉𝑖𝑖
𝐾𝐾 ≠ 𝜙𝜙𝑉𝑉𝑗𝑗

𝐾𝐾  (8) 

 𝐻𝐻𝑋𝑋𝑋𝑋 = 1
2 ∑ 𝜎𝜎𝑖𝑖

𝑥𝑥𝜎𝜎𝑗𝑗
𝑥𝑥 + 𝜎𝜎𝑖𝑖

𝑦𝑦𝜎𝜎𝑗𝑗
𝑦𝑦

𝑖𝑖,𝑗𝑗∈𝑇𝑇
 

(13) 

 𝐶𝐶𝑘𝑘,𝑙𝑙 = (𝑘𝑘
𝑙𝑙 ) 

(12) 
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𝐻𝐻𝑋𝑋𝑋𝑋  is mixing Hamiltonian which is consists of 𝜎𝜎𝑥𝑥 

and 𝜎𝜎𝑦𝑦 pairs. The set 𝑇𝑇 represents the mixing set, which 

includes all the coloring pairs for each vertex. 

The operator 𝜎𝜎𝑖𝑖
𝑦𝑦

 in the above Hamiltonian is Pauli-Y 

operator. 

 

If the state before applying above operator is |00⟩ or 

|11⟩, it is removed from the computational space. In 

other words, states within the infeasible space, such as 

the following states, are removed. Therefore, W-state 

can be applied as the input state as shown in Fig. 2. 

 

 
Fig. 2 QAOA applied 𝑿𝑿𝑿𝑿 mixer. Following 𝑼𝑼𝑾𝑾 is 𝑾𝑾−state 

input preparation, 𝒁𝒁𝜸𝜸𝒁𝒁𝜸𝜸  represents problem Hamiltonian 

operator, and 𝑿𝑿𝑿𝑿 corresponds to 𝑿𝑿𝑿𝑿 mixing Hamiltonian. 

 

 The cost function Hamiltonian of QAOA solving graph 

coloring addresses the edge constraints. Let 𝐻𝐻𝑃𝑃 be the 

problem Hamiltonian addressing edge constraints and 

𝑄𝑄𝑖𝑖𝑖𝑖 be the given graph 𝐺𝐺 matrix. 

 

This means every copies of vertex have to satisfy the 

edge constraints. 

For solving  

we define 𝐶𝐶(𝜙𝜙𝑉𝑉𝐾𝐾) as max multi colorable problem cost 

function corresponding to the problem Hamiltonian. 

 The desired state of level-𝑝𝑝 QAOA is expressed in the 

following state :  

Finally, expectation value is calculated as :  

The variable 𝛾𝛾 and 𝛽𝛽 are determined through classical 

optimization, and ultimately, an iterative algorithm is 

performed in a direction that maximizes the 

approximation ratio, 𝑅𝑅 

It is expected that lower levels of QAOA would 

exhibit higher performance. However, the complexity 

of adopting the proposed state as an input states need to 

be assessed. This is because conventional QAOA 

constructs the input state using single qubit operators. 

On the other hand, the proposed approach involves a 

significant number of Toffoli gates and two qubit 

unitary gates, which contribute to a substantial portion 

of the circuit depth. Therefore, it’s important to examine 
the complexity introduced by the process of using the 

proposed state as an input data. 

IV. CONCLUSION 

In this paper, the fundamental concepts of QAOA 

were explained. Furthermore, a design approach for the 

input state dimensional reduction quantum algorithm 

process is proposed to solve the graph coloring problem. 

QAOA capable of addressing multi-coloring problems 

was discussed. By applying the quantum algorithm to 

multi-node allocation problems, it is expected to 

achieve high performance with a reduced number of 

iterations. However, for actual verification, simulations 

based on the proposed design need to be conducted to 

compare performances. Additionally, further research is 

required to understand at what QAOA level the 

performance saturates in the future. 
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