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Abstract— For near-term quantum computer, Quantum 

Error Mitigation (QEM) has recently attracted attention as a 

solution to reduce errors in quantum computers.  In this paper, 

we introduce one of the QEM protocols, symmetry verification, 

and implement it using Qiskit. To check the performance, we 

use the VQE (Variational Quantum Eigensolver) to find the 

ground-state energy of hydrogen molecule (𝑯𝑯𝟐𝟐) on two qubits. 

Keywords—Quantum computer, Quantum Error Mitigation, 

Symmetry Verification 

 

I. INTRODUCTION 

Quantum computers have been attracting attention since 
the idea was first proposed in the 1980s because they have 
advantages compared to classical computers such as 
exponentially faster calculations. However, some errors may 
occur during qubit control or during the operation. Quantum 
Error Correction (QEC) has been studied steadily since Peter 
Shor's 9 qubit code in 1995 to reduce errors in quantum 
computers [1]. Quantum computing with quantum error 
correction is called fault-tolerant quantum computing, and for 
practical fault-tolerant quantum computers require structural 
designs with high threshold and low overhead. Surface code 
is the most common architecture due to its high threshold and 
its advantage of being composed of near-neighbor operations 
[2,3]. 

However, to implement the logical qubits of quantum error 
correction codes, a large number of physical qubits are 
required, and the number of physical qubits actually 
implemented is hundreds. Therefore, there are currently 
technical limitations to implement quantum error correction in 
real quantum computers. To overcome this problem, Quantum 
Error Mitigation (QEM), which reduces the errors instead of 
correcting them, has recently attracted attention as a solution 
for near-term quantum computers. There are some protocols, 
called Zero-Noise Extrapolation (ZNE) and Probabilistic 
Error Cancellation (PEC), proposed by Temme et al. in 2017 
[4].  

X. Bonet-Monroig et al. suggest a mitigation protocol 
using symmetry existing in the quantum mechanical system, 
called Symmetry Verification (SV) [5]. In this paper, we 
introduce the Symmetry Verification protocol and Variational 
Quantum Eigensolver (VQE). We implement the symmetry 
verification using Qiskit, a Python library by IBM. To check 
the performance, we use the VQE to find the ground-state 
energy of a hydrogen molecule (𝐻𝐻2) on two qubits. 

II. SYMMETRY VERIFICATION 

Quantum error mitigation is attracting attention as a 
solution to reduce errors occurring in implementable quantum 
computers in the near future. In 2018, X. Bonet-Monroig et al. 
use the symmetry existing in the quantum mechanical system. 
When the errors break the symmetries of the ideal quantum 
state, we can identify the errors and remove them via post-
selection. It is similar to a quantum error detection code. 

In quantum systems, the Hamiltonian ( 𝐻̂𝐻 ) exists, and 

symmetry (𝑆̂𝑆) is a unitary operator that commutes with the 
Hamiltonian. 

 

[𝐻̂𝐻, 𝑆̂𝑆] = 𝐻̂𝐻𝑆̂𝑆 − 𝑆̂𝑆𝐻̂𝐻 = 0 (1) 

In this case, 𝐻̂𝐻 may be diagonalized within the eigenspaces of 

𝑆̂𝑆, i.e. eigenstates |𝜓𝜓⟩ can be chosen in such a way that 𝑆̂𝑆|𝜓𝜓⟩ =
𝑠𝑠|𝜓𝜓⟩, where 𝑠𝑠 is an eigenvalue of 𝑆̂𝑆. However, in real quantum 
computers, noise may shift the state out of the target 
eigenspace. Thus, by checking whether the system remains in 
the target space in the middle or at the end of a calculation, we 
can reduce the effect of noise. 

A. Ancilla Symmetry Verification 

 The simplest way of symmetry verification is the use of an 

ancilla qubit to measure Pauli symmetry 𝑆̂𝑆 ∈ 𝑃𝑃. We can write 

𝑆̂𝑆  in terms of its tensor factors, 𝑆̂𝑆 =⊗𝑖𝑖 𝑆̂𝑆𝑖𝑖 , where  𝑆̂𝑆𝑖𝑖 ∈
{𝐼𝐼, 𝑋𝑋, 𝑌𝑌, 𝑍𝑍} and let 𝑁𝑁𝑠𝑠 be the number of nontrivial 𝑆̂𝑆𝑖𝑖. To each 

𝑆̂𝑆𝑖𝑖 , we can perform a corresponding rotation 𝑅̂𝑅𝑖𝑖 =
{𝑒𝑒𝑒𝑒𝑒𝑒 (𝑖𝑖 𝜋𝜋

2 𝑌𝑌) , 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑖𝑖 𝜋𝜋
2 𝑋𝑋) , 𝐼𝐼}   such that 𝑅̂𝑅𝑖𝑖|𝑆̂𝑆𝑖𝑖 = 1⟩ = |0⟩ . 

|𝑆̂𝑆𝑖𝑖 = 1⟩ means eigenstate with an eigenvalue of 1 for 𝑆̂𝑆𝑖𝑖. The 

circuit for verification is shown in Fig. 1(a). When the ancilla 

qubit reads 1, we discard this circuit run. If the quantum 

processors have linear connectivity, the ancilla qubit may be 

shuffled via SWAP gates as shown in Fig. 1(b). In both cases, 

the circuit depth is 𝑂𝑂(𝑁𝑁𝑠𝑠) 

 

B. In-line Symmetry  Verification 

 Instead of using ancilla qubit, the symmetry 𝑆̂𝑆  can be 
encrypted onto the computational degree of freedom of a qubit 
in the system. In the case of all-to-all connectivity, circuit 
depth is 𝑂𝑂(log 𝑁𝑁𝑠𝑠) because qubit coupling is performed in a 
binary tree manner. The circuit for this method is shown in Fig. 
1(c). In the case of linear connectivity, the circuit depth is 
𝑂𝑂(𝑁𝑁𝑠𝑠) as shown in Fig. 1(d)\ 
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III. VARIATIONAL QUANTUM EIGENSOLVER 

The Variational Quantum Eigensolver (VQE) was 

originally developed by Peruzzo et al. [6], and its theoretical 

framework was formalized by McClean et al. [7]. It is the 

most promising NISQ algorithm for quantum chemistry 

because it aims to compute an upper bound for the ground-

state energy of a given Hamiltonian. It is also a hybrid 

classical-quantum algorithm in which the expectation value 

of the energy is computed using a quantum algorithm and 

minimized using a classical optimization algorithm. 

According to the Rayleigh-Ritz variational principle, the 

ground state energy 𝐸𝐸0 associated with a given Hamiltonian 

𝐻̂𝐻 is bounded by 

𝐸𝐸0 ≤
⟨𝜓𝜓|𝐻̂𝐻|𝜓𝜓⟩
⟨𝜓𝜓|𝜓𝜓⟩  (2) 

The VQE therefore aims to find a trial wavefunction |𝜓𝜓⟩, 
such that the expectation value of the Hamiltonian is 

minimized. We briefly introduce the process of VQE to 

perform this minimization task on a quantum computer [8].  

A. VQE pipeline 

1) Hamiltonian construction and representation : The 

first step of VQE is to define the system for which we want 

to find the ground state. There are two ways – first and second 

quantization. In second quantization, the Hamiltonian can be 

expressed in terms of fermionic operators, known as creation 

and anhiliation operators. 

2) Encoding of operators : quantum computers can only 

measure observables expressed in a Pauli basis, 𝑃𝑃𝑎𝑎 ∈
{𝐼𝐼, 𝑋𝑋, 𝑌𝑌, 𝑍𝑍}⊗𝑁𝑁  for 𝑁𝑁  qubits. In the second quantization, the 

Hamiltonian is expressed as a linear combination of 

fermionic operators, so we need to transform it to the 

weighted sum of Pauli operators as follows : 

𝐻̂𝐻 = ∑𝑤𝑤𝑎𝑎𝑃𝑃𝑎𝑎
𝑎𝑎

 
(3) 

with 𝑤𝑤𝑎𝑎 a weight. There are different types of transformation 

such as Jordan-Wigner transformation, Bravyi-Kitaev 

transformation. 
3) Ansatz and state preparation : Once the Hamiltonian 

has been prepared that can be measured on a quantum 

computer, we need to define an ansatz (or ansatz 

wavefunction) as a parametrized quantum circuit. We can 

express the trial wavefunction |𝜓𝜓⟩  as the parametrized 

unitary 𝑈𝑈(𝜃𝜃) to an initial state (e.g. |0⟩) for 𝑁𝑁 qubits as 

|𝜓𝜓(𝜃𝜃)⟩ = 𝑈𝑈(𝜃𝜃)|0⟩⊗𝑁𝑁 (4) 

A general method to obtain ansatz is the unitary coupled 

cluster (UCC), and to obtain the initial state is the Hartree-

Fock method. 

4) Parameter Optimization : Once the trial wavefunction  

has been prepared, the expectation value is computed. Based 

on the computation result and the optimization algorithm, we 

can compute and update the ansatz parameters iteratively 

until convergence. 

 

IV. CIRCUIT IMPLEMENTATION 

To check the performance, we use the VQE to find the 

ground-state energy of hydrogen molecule (𝐻𝐻2) on two qubits. 

We follow the previous work by O’Malley, which 

implements the VQE on a real quantum computer and 

suggests the software schematic [9]. We use the Bravyi-

Kitaev transformation to convert the STO-3G basis for 𝐻𝐻2 

into a qubit Hamiltonian. The Hamiltonian can be represented 

by only two qubits as follows : 

𝐻̂𝐻 = ℎ𝑜𝑜𝐼𝐼𝐼𝐼 + ℎ1𝐼𝐼𝐼𝐼 + ℎ2𝑍𝑍𝑍𝑍 + ℎ3𝑋𝑋𝑋𝑋 + ℎ4𝑌𝑌𝑌𝑌 + ℎ5𝑍𝑍𝑍𝑍 (6) 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 1. Symmetry verification circuit. (a),(b) Quantum circuit for ancilla symmetry verification. (c),(d) Quantum circuit for in-line symmetry verification. 
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where ℎ𝑖𝑖  depends on the fixed bond length of hydrogen 

molecule. This parameter we use for implementation is in 

Table 1 of the Appendix in [9]. The Hamiltonian commutes 

with symmetry  𝑆̂𝑆 = 𝑍𝑍𝑍𝑍, so our target subspace is 𝑍𝑍𝑍𝑍 = −1. 

We follow the Unitary Coupled Cluster (UCC) ansatz, 

which in this case depends on a single parameter 𝜃𝜃  

𝑈𝑈(𝜃𝜃) = exp(−𝑖𝑖𝑖𝑖𝑋𝑋0𝑌𝑌1) (7) 

so that a parameterized wave function |𝜓𝜓(𝜃𝜃)⟩ for the ground 

state of a hydrogen molecule is given as 

|𝜓𝜓(𝜃𝜃)⟩ = exp(−𝑖𝑖𝑖𝑖𝑋𝑋0𝑌𝑌1) |01⟩ (8) 

where |01⟩ is initial state of the Eq. (1) using the Hartree-

Fock method. This parameterized wave function can be 

decomposed using standard methods, as shown in Fig. 2. 

Then VQE works by variationally optimizing 𝜃𝜃 of the ansatz 

in order to minimize the expectation value. To check the 

performance of the symmetry verification protocols, we use 

in-line symmetry verification. 

To test symmetry verification in the presence of realistic 

noise, we simulate the circuit, as shown in Fig. 3 on ibmq-

lima, IBMQ backend. When the measurement result is 0, we 

discard this circuit run because our target subspace is 𝑍𝑍𝑍𝑍 =
−1. As a result, at all bond distances, we observe that the 

energy value of the circuit with symmetry verification (red) 

is closer to the exact value (green) than the unmitigated 

circuit (blue). 

 

 

 

Fig. 2. Software quantum circuit diagram of the VQE except for 
measuring the expectation value. 

 
Fig. 3. Qiskit circuit diagram of the VQE with in-line symmetry 

verification. 

 

 
Fig. 4. Simulation Result. 

V. DISCUSSION 

Quantum Error Mitigation (QEM) has recently attracted 
attention as a solution for near-term quantum computers. One 
of the QEM protocols is symmetry verification using 
symmetry existing in the quantum system, like quantum error 
detection. We implement it using Qiskit, and to check the 
performance, we use the Variational Quantum Eigensolver 
(VQE) to find the ground-state energy of a hydrogen molecule 
(𝐻𝐻2 ) on two qubits. As a result, at all bond distances, we 
observe that the energy value of the circuit with symmetry 
verification is better than that of the unmitigated circuit. 

We expect that we can check the performance for a specific 
noise model, e.g., dephasing channel for future studies.   
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