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Abstract—Among quantum algorithms, the quantum approx-
imation optimization algorithm (QAOA) is an algorithm that
finds approximate solutions. Recursive QAOA is proposed to
overcome the limitation that QAOA has lower performance
than Goemans-Williamson algorithm in the MAX-CUT problem
[Physical Review Letter, 125, 260504, 2020]. In this paper, we
introduce a method with lower complexity than RQAOA and
compare its numerical results in the MAX-CUT problem. At the
same level, the performance of the proposed method is lower than
that of RQAOA, but the number of computations of quantum
and classical parts is very small.

Index Terms—Quantum algorithm, Quantum Approximate
Optimization Algorithm

I. INTRODUCTION

In various areas, the quantum algorithm has been studied
to have more advantages than classical algorithms [1]–[6].
Recently, the usability of the variational quantum algorithm
(VQA) has been discussed. The VQA is a method that does not
have the disadvantage of high quantum circuit depth of exist-
ing quantum algorithms (Shor’s algorithm, Grover’s algorithm,
and HHL algorithm). Therefore, VQA with a low quantum
circuit depth that can be calculated from an incomplete quan-
tum computer is currently being actively studied. Among the
algorithms belonging to VQA, quantum approximate optimiza-
tion algorithm (QAOA) [7] is a technique proposed by Farhi,
Goldstone, and Gutmann. There is a MAX-CUT problem
as an application of QAOA [8]. The QAOA is improved to
Multi-Angle QAOA [9] and Recursive QAOA [10]. Multi-
angle QAOA (MA-QAOA) is a technique that improves the
performance of QAOA by increasing the degree of freedom
of the angle parameter used in QAOA circuits. Recursive
QAOA (RQAOA) is a technique that improves performance
by deleting certain vertex of the graph and performing QAOA
operations recursively.

In this paper, we propose a method to lower the high com-
plexity arising from the recursive procedure of RQAOA. In
the MAX-CUT problem, we present the performance graph of
the proposed technique numerically and mention the validity
of the proposed algorithm through performance comparison
with RQAOA.

II. PREVIOUS WORKS

In this section, we review Quantum Approximate Optimiza-
tion Algorithm(QAOA) [7] and Recursive Quantum Approxi-
mate Optimization Algorithm(RQAOA) [10].

A. Quantum Approximate Optimization Algorithm

Quantum Approximate Optimization Algorithm(QAOA) is
an algorithm to find an approximate solution. QAOA has an
initial state, |0⟩. A Hadamard operator (H) is applied to the
initial state, |s⟩ = H |0⟩. The Hadamard operator superposes
the initial state as all cases of the problem.

|s⟩ = H⊗n |0⟩ =
∑
i

1√
2n

|i⟩ (1)

where n is the number of the qubit. QAOA has two cases of
the unitary operator, Problem(HP ) and Mixing(HM ).

U(HP , γ) = e−iγHP (2)

U(HM , β) = e−iβHM (3)

where HP is a problem Hamiltonian composed of ZZ operator
and HM is a mixing Hamiltonian which is the sum of the
pauli X operator for n qubits. The problem Hamiltonian is
related to an objective function of the problem. The objective
function of the bit string x is represented as C(x). In MAX-
CUT problem, let E be an edge set of the graph G, and let V
be a vertex set of G. The objective function C(x) is defined
as

C(x) =
∑

(j,k)∈E

Cjk(x) =
∑

(j,k)∈E

1

2
(1− xjxk) (4)

where x = x1 · · ·xn, (xi ∈ {−1, 1}). If the vertex j belongs
to the same set of the vertex k, xjxk = 1. Otherwise, the value
of xjxk is −1. The goal of the MAX-CUT problem is finding
the cutting set maximizing the value of C. Using the objective
function of the MAX-CUT problem, the problem Hamiltonian
HP is represented as follows:

HP =
∑

(j,k)∈E

1

2
(I − ZjZk) (5)
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where I is an identity operator. The final state of p-level
QAOA is

|γ,β⟩ = U(HM , βp)U(HP , γp) · · ·U(HM , β1)U(HP , γ1) |s⟩
(6)

where γ = (γ1, · · · , γp) and β = (β1, · · · , βp). The expecta-
tion value of C in the state |γ,β⟩ is denoted by

Fp(γ,β) = ⟨γ,β|HP |γ,β⟩. (7)

The goal is maximizing Fp(γ,β).

Fp(γ
∗,β∗) = max

γ,β
Fp(γ,β). (8)

Let R be the approximation ratio,

R =
Fp(γ

∗,β∗)

Cmax
(9)

where Cmax is the maximum value of C, Cmax = maxx C(x).

B. Recursive Quantum Approximate Optimization Algorithm

Recursive Quantum Approximate Optimization Algo-
rithm(RQAOA) utilizes the expectation value of the edge
(j, k), Mj,k.

Mj,k = ⟨γ∗,β∗|ZjZk|γ∗,β∗⟩. (10)

After finding the largest magnitude of Mj,k for all edges,
a specific edge (u, v) is chosen, Mu,v = maxj,k |Mj,k|.
RQAOA redefine the recursive problem Hamiltonian Hn as

Hn =


(j,k)∈E

1

2
(I − Jj,kZjZk) (11)

where Jj,k are arbitrary real values. For the specific edge
(u, v), impose a constraint Zv = sgn (Mu,v)Zu and substitute
it into the recursive problem Hamiltonian Hn to remove the
vertex v.

Hn =
1

2
(mI − Ju,v sgn(Mu,v)) (12)

− 1

2


(j,v),j ̸=u

Jj,v sgn(Mu,v)ZjZu

− 1

2


(j,k),k ̸=v

Jj,kZjZk

From the Hamiltonian Hn, the recursive problem Hamiltonian
Hn−1 in the next step is represented as

Hn−1 =
1

2
(m− 1)I − 1

2


(j,v),j ̸=u

Jj,v sgn(Mu,v)ZjZu (13)

− 1

2


(j,k),k ̸=v

Jj,kZjZk

=


(j,k)∈E′

1

2
(I − J ′

j,kZjZk) (14)

where E′ is the edge set in the next step. The coefficients J ′
j,k

are summarized as follows:

J ′
j,k =




Jj,v sgn(Mu,v), if k = u and (j, u) /∈ E
Jj,v sgn(Mu,v) + Jj,u, if k = u and (j, u) ∈ E
Jj,k, otherwise

(15)
where the edge (j, k) for the coefficient J ′

j,k belongs to the
edge set E′. Using the Hamiltonian Hn−1, find the expectation
value for the Hamiltonian. The recursion step continues as
much as nc steps, nc ≪ n. After the nc steps, the final
expectation value is calculated with backtracking method.

III. PROPOSED METHOD

In this section, we describe a reduced complexity method of
RQAOA. And we provide simulation results for MAX-CUT
problem.

A. Reduced Complexity Method of Recursive Quantum Ap-
proximate Optimization Algorithm

In RQAOA, the recursive problem Hamiltonian Hn is up-
dated by eliminating the specific vertex. Since this procedure
is executed by serial, the RQAOA can have a high total
complexity. In order to mitigate this disadvantage, we propose
a reduced complexity method of RQAOA having slightly lower
performance.

First, we consider the recursion size to be nr. We choose the
nr edges with large expectation values. The nr nodes in the
chosen edges are eliminated with the same method in RQAOA.
We repeat the elimination as much as nc steps. The number
of total removed nodes is nr × nc. The recursive problem
Hamiltonian Hn,nr is represented as

Hn,nr =


(j,k)∈E

1

2
(I − Jj,kZjZk). (16)

For simplicity, we consider that nr = 2. We choose the
specific two edges, (u1, v1), (u2, v2). In some cases, the same
nodes might be picked. If u1 = u2 or u1 = v2, we choose
the other edge with the next large expectation value. We
assume that u1 ̸= v1 ̸= u2 ̸= v2. For the same method of
RQAOA, we impose two constraints Zv1 = sgn(Mu1,v1

)Zu1
,

Zv2 = sgn(Mu2,v2
)Zu2

. We substitute these into the recursive
problem Hamiltonian Hn,2 to eliminate the nodes v1 and
v2. If edge (v1, v2) exists, it is replaced by edge (u1, u2).
Zv1Zv2 = sgn(Mu1,v1

) sgn(Mu2,v2
)Zu1

Zu2
. Otherwise, the

Hamiltonian Hn,2 is represented by

Hn,2 =
1

2
(mI − Ju1,v1

sgn(Mu1,v1
)− Ju2,v2

sgn(Mu2,v2
))

(17)

− 1

2


(j,v1),j ̸=u1

Jj,v1
sgn(Mu1,v1

)ZjZu1

− 1

2


(j,v2),j ̸=u2

Jj,v2
sgn(Mu2,v2

)ZjZu2

− 1

2


(j,k),k ̸=v1,v2

Jj,kZjZk.

524



Fig. 1. Simulation results of 10 nodes / 20 edges random graph. The
simulation is executed in 2 cases which are RQAOA and the proposed
algorithm. The elimination step of RQAOA nc is considered from 1 to 5.
The elimination level of the proposed algorithm is also from 1 to 5. The
value of the parameter nc is assumed by 2 in the proposed algorithm.
From the 1 to 3 level, the performance of the proposed algorithm is close
to RQAOA. The proposed algorithm is executed by one-time quantum and
classical computation.

B. Simulation Results

In this section, we provide the simulation results for MAX-
CUT problem. We used IBMQ qiskit program. The graph
models are generated by ‘nx.gnm random graph’ module in
networkx library. We used the COBYLA(Constrained Op-
timization By Linear Approximation) algorithm to find the
optimized angles. Figure 1 shows the simulation results of 10
nodes / 20 edges graph model. The horizontal axis denotes the
elimination level, where the value of nc in RQAOA and the
value of nr in the proposed algorithm. The elimination step
of the proposed algorithm nc is considered by 2. The vertical
axis is the approximation ratio(A.R.) which is defined by in
Section II-A. The maximum A.R. value is 1. In the 1,2, and
3 levels, the proposed algorithm has a similar performance
to RQAOA. Since the proposed algorithm is performed by
one-time computation, using the proposed algorithm is more
economical than RQAOA in level 3.

We provide the simulation results of the other graph model
(15 nodes / 20 edges) in Fig. 2. In this graph model, the
proposed algorithm has a high performance in level 4.

IV. CONCLUSION

In this paper, we presented the lower complexity method of
RQAOA. We introduced the recursive problem Hamiltonian
Hn,nr

eliminating nr nodes in one step. By removing the nr

nodes in one step, the performance increases and complexity
decreases. In addition, we described the simulation results for
MAX-CUT problem. The complexity of the proposed method
is lower than RQAOA. However, the proposed method has
slightly lower performance than RQAOA. We compared the
proposed algorithm with RQAOA in only simulation. A more
valid comparison needs to consider the formula of the two
algorithms.

Fig. 2. Simulation results of 15 nodes / 20 edges random graph. The
elimination step of RQAOA nc is considered from 1 to 5. The elimination
level of the proposed algorithm is also from 1 to 5. The value of the parameter
nc is assumed by 2 in the proposed algorithm. In level 4, the performance of
the proposed algorithm is higher than that of RQAOA.
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