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Abstract

Robust spatial understanding is one fundamental condi-
tion for safety-aware autonomous driving against adverse
weather and lighting conditions, such as rain, fog, haze,
snow, and low-light environments. Therefore, numerous au-
tonomous vehicle platforms adopt various sensor modal-
ities to ensure safety and reliability (e.g., RGB camera,
NIR camera, thermal camera, LiDAR, and RADAR). Among
them, the RGB camera is a commonly adopted comple-
mentary sensor because it can provide dense spatial under-
standing ability compared to LiDAR and RADAR. However,
RGB camera is known to be vulnerable to changes in light-
ing and weather conditions. In this paper, we empirically
analyze the robustness of monocular depth estimation from
RGB image in diverse seasonal, weather, and lighting con-
ditions. Also, we investigate the robustness of depth esti-
mation from NIR and thermal images in the same condition
to find which sensor is robust to environmental changes and
capable of dense spatial understanding even in extreme con-
ditions. As a result, we found thermal cameras can provide
reliable and robust dense spatial understanding against di-
verse seasonal, weather, and lighting condition changes.

1. Introduction

Modern advancements in artificial intelligence have led
to remarkable performance improvement in various com-
puter vision tasks including semantic perception [1–4] and
spatial perception [5–10]. Upon these perception abilities,
an agent can perform high-level tasks such as path plan-
ning, obstacle avoidance, object grasping, navigation, and
autonomous driving. However, when an agent encounters
challenging real-world environments such as low-lighting,
rainy, smoky, and foggy conditions, its semantic and spatial
perception ability loses functionality.

Therefore, for the safety-aware autonomous driving sys-
tem against adverse weather and lighting conditions, nu-
merous autonomous vehicle platforms adopt various sensor

(a) Monocular depth estimation from RGB, NIR, and thermal image

(b) Challenging real-world environments in autonomous driving scenario

Figure 1. Empirical study of monocular depth estimation from
RGB, NIR, and thermal image in diverse real-world environ-
ments. In this paper, we investigate the robustness and reliability
of a modern deep neural network for monocular depth estimation
from RGB, NIR, and thermal images (a) in diverse challenging
real-world environments, such as rainy, snowy, and low-lighted
conditions (b).

modalities to ensure safety and reliability (e.g., RGB cam-
era, NIR camera, thermal camera, LiDAR, and RADAR).
Among them, the RGB camera is a commonly adopted
complementary sensor because it can provide dense spa-
tial understanding ability compared to LiDAR and RADAR.
However, RGB image is easily degenerated by changes in
lighting and weather conditions. The degeneration also af-
fects the reliability of a deep neural network’s prediction
result.

In this paper, we empirically analyze the robustness
of monocular depth estimation from RGB image in di-
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verse seasonal, weather, and lighting conditions, as shown
in Fig. 1. Also, we investigate the robustness of depth esti-
mation from NIR and thermal images in the same condition
to find which sensor is robust to environmental changes and
capable of dense spatial understanding even in extreme con-
ditions. As a result, we found thermal cameras can provide
reliable and robust dense spatial understanding against di-
verse seasonal, weather, and lighting condition changes.

2. Implementation Details

2.1. Multi-Spectral Stereo (MS2) Dataset

We utilize a Multi-Spectral Stereo (MS2) dataset [11] to
evaluate a network’s robustness. The dataset provides about
184K multi-spectrum data pairs of RGB, NIR, thermal cam-
era, LiDAR, and GPS/IMU taken under various locations,
times, and weather conditions. For the monocular depth es-
timation, we utilize an MS2-summer training split for train-
ing, MS2-summer validation split for validation, and MS2-
summer evaluation splits for evaluation of daytime, night-
time, and rainy conditions. Also, we utilize the MS2-spring,
fall, and winter evaluation split for the zero-shot evaluation.
Please refer to the paper [11] for additional details.

2.2. Network Architecture

Monocular Depth Estimation (MDE) network is adopted
from NeWCRF [10] to evaluate the robustness and reliabil-
ity of a modern deep neural network. We utilize off-the-
shelf network architecture from the official source code and
don’t modify any architecture details. For the NIR and ther-
mal images that have only a single-channel, we repeat them
three times along the channel axis to be identical to the RGB
image. All MDE networks are initialized with ImageNet
pre-trained backbone model [12] by following the original
implementations [10].

2.3. Training Details

We utilize the PyTorch library [13] to implement our pro-
posed method. All models are trained for 30 epochs on
a single RTX A6000 GPU with 48GB memory. We uti-
lize AdamW optimizer [14] with an initial learning rate of
1e−4 for all model training. For the data augmentation,
we apply random center crop-and-resize, brightness jitter,
and contrast jitter for all modalities. Saturation and hue
jitters [15] are additionally applied to the RGB modality.
Also, the horizontal flip is applied to all modality training.
We utilized the depth evaluation metrics (i.e., RMSE, δ)
commonly used to measure the accuracy and error of depth
estimation results [16–18].

3. Experimental Results

3.1. Depth Estimation from Modality RGB, NIR,
and Thermal image

Firstly, we evaluate the depth estimation performance
from RGB, NIR, and thermal images in an in-distribution
scenario. The Monocular Depth Estimation (MDE) net-
work [10] was trained in MS2-summer training dataset and
evaluated in MS2-summer evaluation splits (day, night, and
rainy). The training and evaluation data have no overlap
but the data distribution can be similar because of the same
seasonal property.

The evaluation results are shown in Tab. 1 and Fig. 2.
The first-row in Fig. 2 shows that monocular depth maps
from a thermal image outperform in all day, night, and rainy
conditions compared to depth results from RGB and NIR
images. RGB and NIR images are suffered from unclear
visibility, blur effect, and occlusion by rain or windshield
wipers in rainy conditions. Therefore, the quantitative re-
sults are generally lower than the thermal image-based pre-
diction result. In day and night conditions, thanks to the
light sensitivity of the NIR spectrum, depth from a NIR im-
age can achieve the second-best results.

3.2. Zero-shot Evaluation : Summer-to-Season X

Secondly, we conduct zero-shot evaluations of the
MDE network [10] in out-of-distribution conditions. The
MDE network was trained in MS2-summer training dataset
and evaluated in MS2-spring (day,night,rainy), MS2-fall
(day,night,rainy), and MS2-winter (day,night,snowy). The
comprehensive comparison results are shown in Tab. 2
and Fig. 2. We measure the performance degradation for
different conditions with RMSE difference between the
Baseline (i.e., MS2-summer day evaluation split) and each
test set.

In general, depth from thermal image shows robust per-
formance against various domain shifts including seasonal
change, temperature change, weather change, and lighting
condition change. Depth from NIR images achieves the sec-
ond best in most scenarios. We found the color space of
RGB camera introduces further domain shift according to
the changes in season, weather, and lighting conditions. The
NIR camera has better light sensitivity and single-channel
intensity information that are not affected by color filters.
Therefore, depth from NIR images shows generally better
robustness and performance than RGB images. But, still,
NIR camera is affected by a light source and lighting ef-
fect. Therefore, the performance and reliability are easily
degraded by insufficient lighting conditions, lighting effects
(glare and blur) caused by water particles, and occlusion
caused by windshield wipers and water particles. On the
other hand, thermal image has less affected by the lighting
effect, water particles, and the presence of lighting source.
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Table 1. Quantitative comparison of depth estimation results on the MS2 dataset (Summer) [11]. We train and evaluate a state-of-
the-art monocular depth estimation network [10] on the MS2 dataset. Monocular depth maps from thermal image outperform in all day,
night, and rainy conditions compared to depth results from RGB and NIR images. Depth from NIR image shows runner-up results. In
rainy conditions, RGB and NIR images are suffered from unclear visibility, blur effect, and occlusion by rain or windshield wipers. The
best performance in each block is highlighted in bold.

TestSet
RGB image NIR image Thermal image

RMSE (↓) δ < 1.25 (↑) RMSE (↓) δ < 1.25 (↑) RMSE (↓) δ < 1.25 (↑)

Summer (Clear+Day) 3.111 94.8 3.071 93.3 2.717 95.1
Summer (Clear+Night) 3.573 89.9 3.157 91.2 2.544 95.2
Summer (Rainy+Day) 4.447 87.0 5.042 81.0 3.503 90.9

Table 2. Zero-shot evaluation (Spring, Fall, Winter): Quantitative comparison of monocular depth estimation results from RGB,
NIR, and thermal images. We evaluate the monocular depth network (i.e., NeWCRF [10]) trained with MS2 dataset (summer) [11] on the
out-of-distribution season, weather, and lighting condition. We measure the performance degradation for different conditions with RMSE
difference between the Base and each test set. The estimated depth maps from thermal images show robust performance against various
domain shifts, including seasonal changes, temperature changes, weather changes, and lighting condition changes. Depth from NIR images
also shows better performance than RGB images. The best performance in each block is highlighted in bold.

TestSet
RGB image NIR image Thermal image

RMSE (↓) δ < 1.25 (↑) ∆ RMSE (↓) RMSE (↓) δ < 1.25 (↑) ∆ RMSE (↓) RMSE (↓) δ < 1.25 (↑) ∆ RMSE (↓)

Base: Summer (Clear+Day) 3.111 94.8 - 3.071 93.3 - 2.717 95.1 -

Spring (Clear+Day) 5.473 70.0 -2.362 4.157 77.4 -1.086 3.810 84.9 -1.093

Spring (Rainy+Day) 5.599 68.9 -2.488 5.470 65.8 -2.399 3.207 85.5 -0.490

Spring (Rainy+Night) 7.282 57.8 -4.171 7.207 52.2 -4.136 3.848 81.6 -1.131

Fall (Clear+Day) 5.260 80.3 -2.149 3.814 89.6 -0.743 4.290 88.1 -1.573

Fall (Rainy+Night) 5.017 75.4 -1.906 3.532 83.8 -0.461 3.271 88.1 -0.554

Winter (Snowy+Day) 5.092 72.9 -1.981 4.740 74.5 -1.669 3.640 83.2 -0.923

Winter (Snowy+Night) 6.154 73.0 -3.043 4.585 83.8 -1.514 3.362 91.1 -0.645

Average 5.555 72.5 -2.444 4.613 77.0 -1.542 3.567 84.9 -0.850

4. Conclusion

This paper empirically analyzes the robustness of
monocular depth estimation from RGB, NIR, and thermal
images in diverse seasonal, weather, and lighting condi-
tions. As a result, we found the depth estimation from
RGB images shows vulnerable properties in the changes of
seasonal, weather, and lighting conditions. Depth estima-
tion from NIR images generally shows better reliability than
RGB image in most cases, thanks to its light sensitivity and
single-channel intensity information that are not affected by
color filters. Lastly, the thermal radiation spectrum is rarely
affected by lighting source, lighting effect, and water parti-
cles. Therefore, depth from thermal images shows the high-
level robustness and performance against changes in sea-
sonal, weather, lighting conditions, and domain shift. We
hope the empirical study is helpful to the reader who wants
to develop their autonomous vehicle platforms.
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