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Abstract— A novel approach to robot control, inspired by 

human behavior, has been introduced with the aim of effectively 

navigating complex and dynamically changing environments 

while handling a wide variety of objects. To achieve this 

objective, researchers have introduced the DexMV (Dexterous 

Manipulation from human Videos) platform [1], which 

harnesses human demonstration videos within a simulation 

environment to rapidly amass extensive datasets for learning 

purposes. Building upon this foundation, this study takes the 

DexMV platform a step further by enhancing its capabilities to 

incorporate tactile data obtained from human grasping actions. 

Moreover, significant efforts have been dedicated to bridging 

the gap between simulation and real-world implementation 

inherent in applying imitation learning outcomes to actual 

manipulation tasks. This paper presents a comprehensive 

overview of the evolution of the DexMVT (Dexterous 

Manipulation from human Video and Tactile sensing) platform. 
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I. INTRODUCTION 

Manufacturing tasks, such as assembling parts in industrial 
settings, involve repetitive work within a stable and 
unchanging environment. This characteristic facilitates the 
implementation of automation and robotics, as operational 
control remains relatively consistent across fixed locations. 
However, in the context of commercial service environments, 
constant changes are inherent within the surroundings, and the 
nature of the tasks varies. Consider the act of pouring water 
into a cup at a restaurant – each establishment possesses 
distinct environmental factors, diverse pot and cup shapes, and 
varying water quantities to be poured. Applying conventional 
manufacturing robot control methodologies to settings like 
restaurants necessitates reconfiguring control parameters for 
each unique instance, especially when pots or cups change. 
Given that service environments exhibit significantly greater 
complexity and diversity compared to manufacturing settings, 
this approach proves inefficient, inevitably leading to elevated 
robot operational costs. To address this challenge, we present 
an alternative approach that mimics human behavior for 
diverse service-related motion tasks. 

II. COMPOSITION OF IMITATION LEARNING PLATFORM 

The proposed imitation learning platform, referred to as 
DexMVT (Dexterous Manipulation from human Video and 
Tactile sensing), encompasses a comprehensive set of 
components as illustrated in Figure 1. Building upon the 
foundation of the DexMV (Dexterous Manipulation from 
human Videos) platform [1], DexMVT integrates five key 

elements to facilitate effective imitation learning and enhance 
the manipulation capabilities of robots. 

(1) Human Behavior Data Collection: The first 
component involves the compilation of human 
behavioral data. This dataset captures the diverse 
range of actions and motions performed by humans 
during manipulation tasks. 

(2) 3D Pose Recognition: The second facet revolves 
around 3D pose recognition. This technology enables 
accurate identification and tracking of the spatial 
configurations and orientations of objects and 
manipulators. 

(3) Robot Model Retargeting: The third aspect entails the 
process of robot model retargeting. Through this 
process, the learned human behaviors can be 
translated and adapted to the specific kinematics and 
dynamics of the robotic manipulator. 

(4) Imitation Learning Training on Simulation: The 
fourth component focuses on the training phase. 
Imitation learning is carried out within a simulated 
environment. The robot learns to replicate human 
actions by observing the dataset and mapping them 
onto its own simulated actions. 

(5) Actual Manipulator's Operation: Finally, the fifth 
component bridges the gap between simulation and 
real-world operation. The knowledge gained during 
simulation is applied to real manipulator tasks, 
enabling the robot to execute learned behaviors in a 
physical setting. 

Fig. 1. DexMVT platform Overview 

The DexMVT platform represents a substantial expansion 
of the original DexMV platform, encompassing the 
integration of human tactile information to facilitate the 
translation of acquired learning outcomes into tangible 
manipulation tasks. By combining tactile sensory data with 
visual inputs, DexMVT significantly augments the robot's 
capacity to comprehend and engage with its surroundings. 
Additionally, this platform streamlines the progression from This work was supported by the Technology Innovation Program 
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simulated learning experiences to practical manipulation 
activities, effectively showcasing the robot's acquired 
proficiencies within a functional operational setting. 

 

A. Collection of  video-based human demonstrations 

We are working on enhancing the capabilities of 
commercial VR gloves by integrating tactile sensors capable 
of detecting pressure and shear forces. These sensors will 
complement the existing finger motion tracking capabilities of 
the gloves. Simultaneously, we are developing a progressive 
video-based data collection system to investigate 3D poses 
and the adaptation of robotic models. Our dataset, curated for 
imitation learning, encompasses hand posture information, 
including sequential finger joint angles, synchronized with 
specific time frames. This dataset is curated during various 
tasks such as object manipulation and relocation. Furthermore, 
the dataset includes 3D positional information of objects 
during task execution, in addition to hand postures. 

To illustrate, we record raw videos using a camera while 
an individual engages in tasks involving object manipulation, 
such as picking up and moving a mug. By estimating hand 
postures and the 3D positional data of the mug within the 
video, we construct a dataset tailored for imitation learning. 
This approach is analogous to the DexMV[1] platform's 
methodology. The DexMV platform can be succinctly 
described as depicted in Figure 2. The configuration involves 
transferring human hand movements and object poses onto a 
physical engine simulator. This data is then utilized to 
facilitate the training of robotic hands to emulate human-like 
motions. 

 

 

Fig. 2. DexMV Platform Overview 

 

Fig. 3 illustrates the experimental setup used to gather 
human demonstration data. To bridge the gap between the 
robot's operational space and the real-world environment 
within the simulation, a camera acquisition system was 
devised. This system involved the installation of a framework 
that held two cameras in place. The enclosed space, measuring 
60x60x30 cm^3, encompassed the area where objects were 
positioned.  

Fig. 3. Human Demo Collection Frame 

 

B. Pose Estimation 

The procedure for generating demo data is as follows. 

(1) A task demo in which an expert directly manipulates 
an object (YCB object set) is taken in a cubic space (2 
RealSense D435i: front, side view) 

(2) The process of extracting the 3D hand pose and object 
pose from the captured video involves the following 
steps. To begin with object detection, the target object 
is chosen by recognizing the working environment 
using the weights acquired from training YOLOv5 
with the YCB dataset. In order to estimate the 3D pose 
of the object, the DOPE++[2] algorithm is employed 
due to its superior performance when compared to 
two other algorithms: PVN3d[3] and FFB6d[4]. For 
the hand pose estimation, the Google Mediapipe hand 
estimation model[5] is utilized to extract data about 
the position of the wrist and the joints in the fingers. 

 

 

 

Fig. 4. Object detection(Left), Object pose estimation(Mid),. 
Hand pose estimation(Right) 

 

By integrating the algorithms for object posture estimation 
and hand posture estimation, the conducted Object + Hand 
Posture Estimation test enables the achievement of pose 
estimation for both hands. This capability is crucial for 
progressing in imitation learning scenarios. Furthermore, the 
integrated approach allows for pose tracking even in cases of 
occlusion, ensuring the extraction of poses without hindrance. 
The simultaneous extraction of both object and hand poses is 
depicted in Figure 5 of the paper, illustrating the effectiveness 
of the proposed methodology. 

 

Fig. 5. Object + hand pose estimation 

 

C. Simulation environment modeling  

In the context of conducting imitation learning within a 
simulation environment, a critical process involves aligning 
3D data from human hands with those of robot hands. This 
process, known as retargeting, necessitates the conversion of 
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3D data obtained from human hands and object videos. The 
objective is to establish a correspondence between the 
movements of human hands and those of robot hands. To 
achieve this, comprehensive models of manipulators, robot 
hands, and tactile sensors are crucial components. 

In this study, the UR5e manipulator was chosen as the 
robotic arm, while the Allegro hand was selected as the robot's 
hand. Additionally, the tactile sensor used was the Digit sensor. 
The process involved creating detailed models of these 
components. For simulation purposes, the MuJoCo platform, 
based on a physics engine, was employed. This simulation 
environment allowed for the integration of the Digit sensor 
onto the tip of each finger, seamlessly incorporating it into the 
existing URDF model of the Allegro hand. A visual 
representation of this modeling process on MuJoCo, wherein 
the Digit sensor is attached to the Allegro hand, is illustrated 
in Figure 6. 

 

 

Fig. 6. MuJoCo Modeling combined with a Allegro hand and 
Digit sensors 

 

An open-source simulator called TACTO was used to 
address the challenges of implementing tactile sensing within 
the MuJoCo physics engine. This simulator aimed to facilitate 
the simulation of a vision-based tactile sensor. The transition 
from the Pybullet physics engine to MuJoCo was executed to 
configure the environment for simulating the Digit sensor. 

Furthermore, the simulator involved modeling the UR5e 
manipulator by incorporating information such as force 
specifications and the operational range for point control, as 
provided by the manufacturer. A visual representation in 
Figure 7 demonstrates the integration of the UR5e 
manipulator and an Allegro hand equipped with digit sensors. 

 

 

Fig. 7. Modeling of a Robot Hand with Tactile Sensors and a 
Manipulator 

 

III. SIM2REAL TRANSFER 

The imitation learning model developed by DexMV 
focuses on generating the pose trajectory of a robot hand using 
imitation techniques. Notably, this trajectory is generated 
independently of any specific dependencies on a robot 
manipulator model. However, directly commanding the robot 
controller with this pose trajectory could lead to issues such as 
trajectory deformation or abrupt halts due to the possibility of 
exceeding the maximum joint speeds of the robot. 

This arises because the training of the learning network 
took place within a simulation environment that did not fully 
account for the intricate movements of an actual manipulator. 
To bridge this gap between simulation and reality, a solution 
has been proposed. A time scaling algorithm has been 
introduced, which applies a dampening effect to the pose 
trajectory derived from the learning network. This 
modification ensures that the resulting robot joint velocities 
remain within acceptable limits, preventing scenarios where 
the robot's movement might surpass its physical capabilities. 

The algorithm's effectiveness can be observed in Figure 8, 
demonstrating how it mitigates potential issues arising from 
the disparity between simulated and real-world movements. 
By implementing this time scaling approach, the learned pose 
trajectory can be successfully transferred to practical scenarios, 
striking a balance between the simulated environment and the 
actual behavior of the robot manipulator..  

 

Fig. 8. Flowchart of trajectory time scaling algorithm 

 

The equation (1) for obtaining the optimal input control 
period corresponding to the pose path of the learning network 
is as follows.[6]  

 

∆𝑡𝑡∗ = ∆𝑡𝑡𝑑𝑑 × 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚(‖𝑸̇𝑸 𝑖𝑖
𝑑𝑑(𝑡𝑡)‖)

𝒒̇𝒒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑖𝑖
)                              (1) 

where, 

∆𝑡𝑡∗ : optimal control period in the real environment 

∆𝑡𝑡𝑑𝑑 : control period in the simulation environment 
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𝑖𝑖 : denotes the joint number of the n-dof robot 

𝑡𝑡 : time step of the trajectory 

𝑸̇𝑸 𝑖𝑖
𝑑𝑑(𝑡𝑡) : 𝑖𝑖𝑡𝑡ℎ joint velocity corresponding to pose trajectory 

at time step t  

𝒒̇𝒒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑖𝑖  : maximum allowable velocity of the  𝑖𝑖𝑡𝑡ℎ  joint 

that given in advance 

 

IV. SUMMARY AND FUTURE WORK 

The DexMVT platform is constructed upon the foundation 
of DexMV [1], with the enhancement of incorporating tactile 
sensing to emulate human grasping actions. A structured 
approach was devised to gather exemplar data of human 
behaviors, facilitating the identification of hand movements 
and grasped objects, as well as the advancement of pose 
estimation techniques. Moreover, comprehensive models for 
manipulators, robotic hands, and tactile sensors were 
meticulously prepared to facilitate the translation of hand 
gestures—a crucial element in imitation-based learning. 

As the development of the DexMVT platform advances, 
the research endeavors will persistently concentrate on 
refining tactile sensors capable of discerning pressure and 
shear forces in the context of human grasping actions. 
Furthermore, exploration into the fusion of visual and tactile 
sensory inputs will continue, along with the formulation of 
imitation learning algorithms rooted in multi-sensory 
information. Addressing the challenge of narrowing the gap 
between simulation and reality (sim2real) remains a focal 
point, encompassing endeavors in both real-world scenarios 
and virtual environments.  
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