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Abstract—Multiple-Input Multiple-Output (MIMO) commu-
nication systems have become a fundamental technology in
modern wireless networks due to their ability to enhance data
rates and system capacity. However, traditional MIMO detec-
tion algorithms face significant challenges, including increasing
complexity and performance degradation with growing system
dimensions. Deep learning has shown great promise in var-
ious domains in recent years, leading researchers to explore
its potential in addressing MIMO detection capability. This
paper provides a comprehensive overview of deep-learning-based
MIMO detection techniques, presenting an extensive literature
review and taxonomy of approaches. We conduct a comparative
analysis with conventional techniques and evaluate the detection
performance of deep learning-based approaches. The paper also
compares the required number of FLOPs operations to identify
the potential of each detection method.

Index Terms—MIMO detection, Deep-learning

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) communication
systems have emerged as a key technology for enhancing data
rates and improving overall system performance in modern
wireless communication networks [1]. MIMO leverages mul-
tiple antennas at both the transmitter and receiver to enable
spatial diversity and multiplexing gains, thereby significantly
increasing spectral efficiency and system capacity. However,
MIMO systems also face formidable challenges, particularly
in the area of accurate signal detection and decoding.

Traditional MIMO detection algorithms, such as Maximum
Likelihood (ML), Minimum Mean Squared Error (MMSE),
and Zero-Forcing (ZF), have proven effective but suffer from
increasing computational complexity and performance degra-
dation as the number of antennas and users grows. As a result,
there has been a growing interest in exploring alternative
detection techniques that can address these limitations and
provide more efficient and reliable solutions.
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Among the various emerging techniques, deep learning has
gained remarkable attention in recent years for its ability to
learn complex representations from large-scale data automat-
ically. The success of deep learning in diverse domains, such
as image recognition, natural language processing, and speech
recognition, has motivated researchers to explore its potential
applications in wireless communication systems, including
MIMO detection [2].

This paper aims to provide a comprehensive overview of the
current state-of-the-art in deep-learning-based MIMO detec-
tion techniques. By presenting an extensive review of the lit-
erature, we aim to shed light on the advancements, challenges,
and potential opportunities of integrating deep learning into
MIMO detection schemes. Our work encompasses a diverse
set of research papers, publications, and technical reports,
showcasing the broad scope of this rapidly evolving field.

II. SYSTEM MODEL

Let Nt and Nr denote the number of the transmitting and
receiving antennas in a MIMO system, respectively. Suppose
the transmitted symbols are from the symbol constellation,
and the set of the constellation symbols is denoted by Θ̃. The
transmitted symbol vector can be represented by a Nt × 1
vector x̃ = [x̃1, x̃2, · · · , x̃Nt

] with each component x̃i ∈ Θ̃.
For given channel matrix H̃ ∈ CNr×Nt , the received signal
vector ỹ is given by

ỹ = H̃x̃+ ñ, (1)

where ñ denotes the additive white Gaussian noise (AWGN)
vector such that ñi ∼ CN (0, σ̃2), ∀i ∈ {1, · · · , Nr}. The
complex-valued system in Eq. (1) can be reformulated into
an equivalent real-valued system by real value decomposition
as

y = Hx+ n, (2)

H =

[
R(H̃) −I(H̃)

I(H̃) R(H̃)

]
,

y =

[
R(ỹ)
I(ỹ)

]
,x =

[
R(x̃)
I(x̃)

]
,n =

[
R(ñ)
I(ñ)

]
,

(3)

in which y ∈ RN , H ∈ RN×K , and x ∈ ΘK , where N =
2Nr,K = 2Nt, and Θ is the set of the alphabet for the real
and imaginary parts of the symbol constellation Θ̃.
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Fig. 1. An architecture overview of an iterative detector.

III. LEARNING-BASED MIMO DETECTION NETWORKS

Deep-unfolding architecture is to design trainable archi-
tectures by parameterizing iterative optimizers with a fixed
number of iterations, which is illustrated in Fig. 1. The basic
idea is to unfold the iterations of a specific algorithm into a
layered architecture, which iteratively estimates the solution
of MLD. The general form of these iterative algorithms
comprises the following updates:

x̂[l] = ŝ[l−1] +Θ[l]
(
y −Hŝ[l−1]

)
+ b[l]

ŝ[l] = Φt(x̂
[l]),

(4)

where the first step computes residual error to compute inter-
mediate signal ŝ[l], then applies denoiser Φt to produce new
estimation ŝ[l].

1) DetNet: Inspired by iterative projected gradient descent
optimization, DetNet [3] updates ŝ with L layers as

ŝ[l] = Π

[
s− θ[l]

∂∥y −Hs∥2

∂s

]

s=ŝ[l−1]

= Π
[
ŝ[l−1] − θ[l]HTy + θ[l]HTHŝ[l−1]

]
,

(5)

where Π[·] denotes a nonlinear projection operator and θ[l] is
a gradient step size. Each iteration in the DetNet architecture
is carried out by a single layer which is composed of a linear
combination of ŝ[l], HTy and HT x̂k and non-linear projection.
The performance can be enhanced by training step size θk at
each layer. Thus, the DetNet is described as

q[l] = ŝ[l−1] − θ
[l]
1 HTy + θ

[l]
2 HTHŝ[l−1],

x[l] =
[
v[l−1],q[l]

]T
,

z[l] = σ(W
[l]
1 x[l] + b

[l]
1 ),

ŝ[l] = ψt(W
[l]
2 x[l] + b

[l]
2 ),

v[l] = W
[l]
3 z[l] + b

[l]
3 ,

(6)

where ψt(x) = −q+ 1
|t|

∑
i∈Ω[σ(x+ i+t)−σ(x+ i−t)] with

q = 1,Ω = {0} for QPSK, and σ denotes ReLU(x). Many
research efforts have been conducted to enhance the DetNet
architecture, due to its impractical computational complexity.

2) ScNet: The ScNet [4] simplifies DetNet by removing v[l]

in Eq. (6), and input and output of each layer are directly
connected element-wise. With the proposed simplifications,
the complexity of the unfolded layer is reduced from O(64K2)

to O(3K) when compared to that of DetNet. The output of
each layer is updated as

x[l] =
[
ŝ[l−1],HTy,HTHŝ[l−1]

]T
∈ R3K×1,

ŝ[l] = ψt(w
[l] ⊙ x[l] + b[l]),

(7)

where ⊙ denotes an element-wise multiplication. Even if the
method dramatically reduces computational complexity, it still
suffers from inferior detection capability.

3) FS-Net: The FS-Net [5] also follows updating process of
Eq. (5), and it can be rewritten as

ŝ[l] = Π
[
ŝ[l−1] + θ[l](HTHŝ[l−1] −HTy)

]
, (8)

which implies that the elements at the same position of
HTHŝ[l] and HTy can be updated with same parameters.
Therefore, FS-Net sets the input vector of (l + 1)th layer to

x̂[l] =
[
ŝ[l−1],HTHŝ[l−1] −HTy

]T
∈ R2K×1, (9)

which reduces the input and, eventually, the internal size of
the network to 2/3 of ScNet.

4) OAMPNet2: OAMPNet2 [6] learns tuning parameters per
iteration to the OAMP algorithm [7] as

x̂[l] = ŝ[l−1] + θ
(1)
l H⊤ (

v2l HH⊤ + σ2I
)−1

(y −Hŝ[l−1]),

ŝ[l] = ηt

(
x̂[l];σ2

l

)
,

v2l =

∥∥y −Hŝ[l−1]
∥∥2
2
− tr (Rnn)

tr (H⊤H)
,

σ2
l =

θ
(2)
l

Nt

(∥∥∥I−θ
(1)
l H⊤H

∥∥∥2

F

∥H∥2
F

[∥∥y −Hŝ[l−1]
∥∥2
2
−Nrσ

2
]
+

+

∥∥∥θ(1)
l H⊤

∥∥∥2

F

∥H∥2
F

σ2

)
,

(10)

where ηt denotes the optimal denoiser for Gaussian noise and
Rnn is the noise covariant matrix. For nth element of vector
z, ηt,n is computed as

ηt,n
(
zn;σ

2
t

)
=

1

Z

∑

xi∈Θ̃

xi exp

(
−∥zn − xi∥2

σ2
l

)
,

Z =
∑

xj∈Θ̃

exp

(
−∥zn − xj∥2

σ2
l

)
.

(11)

5) MMNet: MMNet [8] has two different versions based on
the target channel condition. The internal estimates of each
algorithm are

x̂[l] =

{
ŝ[l−1] + θ

(1)
l H⊤(y −Hŝ[l−1]), i.i.d

ŝ[l−1] +Θ
(1)
l (y −Hŝ[l−1]), Otherwise,

ŝ[l+1] =

{
ηt

(
x̂[l];σ2

l

)
, i.i.d

ηt
(
x̂[l];σ2

l

)
, Otherwise,

(12)

and their noise variance at the input of the denoiser is given
as scalar σ2

t and vector σ2
t for each case.
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Fig. 2. SER simulation result when (Nr, Nt) = {(16, 4), (16, 8)}.

IV. RESULT ANALYSIS

A. Symbol Error Rate Simulation

We conducted simulations to assess the SER performance
of various deep learning models compared to conventional
detection techniques. In the simulations, we consider two an-
tenna configurations: (Nr, Nt) ∈ {(16, 4), (16, 8)} combined
with QPSK modulation and the independent and identically
distributed (i.i.d) Rayleigh fading channel. The SER perfor-
mance of the proposed network when Nr = 16; Nt = {4, 8} is
illustrated in Fig. 2. Our results consistently demonstrated that
deep learning models exhibited competitive SER performance
across different Signal-to-Noise Ratio (SNR) ranges. OAMP-
Net2 detector shows the best detection performance among
DL-driven methods, while FS-Net also showed comparable
performance for both configurations. In particular, the perfor-
mance gap between classic MMSE and other DL detectors
become larger when the number of transmit antenna increases.

B. Computational Complexity Analysis

To evaluate the computational complexity of deep learning
models, we performed FLOPs analysis across a range of archi-
tectures and system configurations. Our analysis highlighted
that while deep learning models generally entail higher com-
putational requirements compared to traditional algorithms for
MIMO detection, the improvements in SER performance often
justify the increased computational load. Notably, some prior
works, such as ScNet and FS-Net architecture, have shown
reasonable computational overhead with significant improve-
ment in SER performance. On the other hand, DL detectors
with an optimal denoiser OAMPNet and MMNet requires high
computational cost due to the inherent expectation matching
operation, which can be represented by SoftMax operator.

In conclusion, our results underscore the potential of deep
learning to enhance MIMO detection performance with mod-

Fig. 3. FLOPs comparison between baseline MMSE and other DL-detectors.

erate complexity overhead. While considering computational
cost remains essential, the adaptability of deep learning ar-
chitectures to varied SNR conditions reinforces their utility in
real-world wireless communication scenarios. Careful selec-
tion and optimization of deep learning models are crucial to
harness their advantages for MIMO detection.

V. CONCLUSION

This paper delves into the confluence of deep learning
and MIMO detection, illuminating the promising path ahead
for enhancing wireless communication systems. Our analysis
underscores the trade-offs between computational complexity
and performance advantages, emphasizing the need for tai-
lored solutions in diverse MIMO scenarios. Positioned at the
forefront of wireless technology evolution, this paper serves as
a guiding compass for researchers and practitioners, charting
the course for innovative advancements in MIMO detection
through the lens of deep learning.
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