
On the Optimization of an Advanced Encryption
Standard Algorithm on Processing-in-Memory
Hyunseob Shin∗, Seunghyun Lee∗

School of Electrical Engineering
Korea University, South Korea

Jahyun Koo
Department of EECS
DGIST, South Korea

Jaeha Kung
School of Electrical Engineering
Korea University, South Korea

Abstract—Demand for on-chip encryption is high to secure
data integrity for numerous tasks. Although the advanced en-
cryption standard is frequently used for memory encryption,
data-intensive characteristic causes high energy consumption
and low throughput. Thus implementing the AES algorithm
with a processing-in-memory technique is emerging to mitigate
those challenges. Still, optimizing for minimal area and power
consumption while improving overall performance remains tasks
to be addressed. In this paper, we propose to improve the
AES process on the PIM architecture by introducing on-the-
fly round key generation, enhanced MixColumns, and flexible
cryptographic algorithm support with a RISC-V controller.

Index Terms—security, cryptography, processing in memory,
advanced encryption standard

I. INTRODUCTION

There are countless attack methods to disturb the designed
operation of a hardware system. Some critical memory attacks,
e.g., cold boot attacks and bus snooping, can contaminate data
and break signal integrity, increasing the demand for better
on-chip encryption methods. Usually, Advanced Encryption
Standard (AES) is used to encrypt data for secure data
communication, but the AES algorithm requires a significant
amount of computation which may increase the communica-
tion latency. To alleviate this issue, prior works have proposed
in-memory encryption/decryption solutions [1]–[3] for higher
energy efficiency. While those methods have optimized the
encryption or decryption process to reduce latency and im-
prove performance, we propose several methods to get even
more performance improvement by optimizing the sub-steps
of the AES algorithm. Another benefit of running encryp-
tion/decryption algorithms would be protecting the secure data,
i.e., private data or encryption keys, from the bus probing
attack that directly reads data coming out of the on-chip
memory.

II. BACKGROUND

A. Advanced Encryption Standard

Advanced Encryption Standard (AES) [4] is an encryption
method for electronic data by the U.S. National Institute of
Standards and Technology. AES is a symmetric-key algorithm,
that uses identical keys on both the encryption and decryption
processes. A key is randomized bits with a length of 128, 192,
or 256 bits. It is highly recommended to use a true random

∗ H. Shin and S. Lee are equally contributed authors.

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Repeat X times

Fig. 1. Advanced Encryption Standard procedure. X equals 9, 11, and 13
times on key lengths of 128, 192, and 256 bits. MixColumn process does
not occur on final iteration.

number generator (TRNG), not a pseudo-random number
generator (PRNG), due to security reasons. Each AES process
can handle 128 bits of raw data, called state.

AES contains the repeated AddRoundKey, SubBytes,
ShiftRows and MixColumns processes as shown in Fig. 1.
AddRoundKey process, XOR result of the current state and
corresponding round key is stored as a new state. For the
AddRoundKey process, a new round key is used. Round
keys are generated independently from the AES process
(KeyExpansion). SubBytes is a non-linear substitution
from a lookup table. The size of the lookup table is 8 × 256
since each value from the state can have 256 values, and the
result of the substitution is also 8 bits. ShiftRows is a cyclic
transposition of bytes within a single state. MixColumns is
a linear mixing operation targeting columns, combining all
values to the new state.

B. Processing-in-Memory (PIM)

Processing-in-memory (PIM) is a paradigm aimed at over-
coming the memory bottleneck inherent in conventional von
Neumann architectures by performing computations within or
near the memory devices. In traditional computing systems,
the fact that the computation unit needs to transfer data from
the memory unit gives rise to the memory wall problem. This
issue grows exponentially due to improvements in processor
speed, which outpaces the access speed of memory. This inef-

17 ICTC 2023



Processor

Memory PIM

Logic Units

Memory Array

Fig. 2. Conventional von Neumann architecture (left), and an example of
Processing-in-Memory architecture (right).

ficiency worsens overall system performance and contributes
to significant energy inefficiency [5].

PIM addresses these challenges by integrating processing
elements into memory units, allowing data to be processed
at its location, thus minimizing the need for data movement
between the memory system and processors. As a result,
the latency associated with data transfers is reduced, and
the memory wall problem is alleviated [6]. PIM is typically
implemented in two distinct ways: one approach involves
embedding bit-line computing units near memory, and the
other is to include computation units inside memory cells.
These architectures can offer significant benefits with respect
to performance, energy efficiency, and security for various ap-
plications, especially those that are data-intensive or memory-
bound [7].

III. PROCESSING-IN-MEMORY FOR AES

A. Previous Work

Numerous research efforts have been devoted to the in-
tegration of the AES algorithm with the PIM architectures.
The AES encryption entails intricate operations, including
substitution, XOR calculation, and mixing, executed on large
data blocks. We can enhance the performance and energy
efficiency of the AES by minimizing data movement and
leveraging parallelism through PIM. However, achieving high
throughput in AES PIM implementations while mitigating
significant overhead in area and power consumption remains
a challenge.

One approach to reduce power consumption and im-
prove performance involves the utilization of look-up tables
(LUT) [2], [3]. P. R. Sutradhar et al. have introduced an
architecture that optimizes the time-consuming SubBytes
and MixColumns processes by precomputing and storing
the required bytes in LUTs, including data like S-box for
SubBytes and multiplied values for MixColumn [2]. Al-
though this strategy yields benefits in terms of high perfor-
mance, it cannot support decryption and other cryptographic
algorithms. There is another paper addressing such limitations.
D. Reis et al. proposed IMCRYPTO, a PIM architecture that

incorporates a RISC-V controller for orchestration of the
AES operations [3]. IMCRYPTO supports AES encryption
and decryption and other encryption algorithms like SHA-
256 through a RISC-V coprocessor which enables in-memory
operations to be executed in arbitrary order. Nevertheless, both
of these architectures contend with considerable area overhead
due to the extensive utilization of LUTs to exploit parallelism.

Zhang et al. have presented an alternative structure that
eliminates the need for LUTs [8]. Their approach involves
organizing the S-box, plaintext, keys, and intermediate data
required by the AES algorithm within the same memory sub-
array. Nonetheless, this approach also introduces challenges,
including large peripherals needed to exploit parallelism, and
concerns related to security and the efficient utilization of data
bits due to all the round keys within the memory subarray.

Xie et al. have implemented computation inside memory
for the Non-volatile Main Memory (NVMM) [1]. While their
work is focused on low energy and the fast process of the
AES, they separated each column of the data matrix into
a separate memory array. Also, they optimized substeps of
MixColumns to boost the speed of encryption. Still, there
are some margins to improve performance.

IV. POTENTIAL ENHANCEMENTS FOR AES PIM

Building upon prior research and addressing limitations
identified in the prior work, we propose enhancements to
the AES PIM architectures, with a specific emphasis on
improving efficiency and security, especially based on the
Sealer architecture [8].

A. Proposal 1. On-the-fly Round Key Calculation

Instead of the data organization in the Sealer architecture,
which stores all the required data in the same memory subar-
ray, we propose to optimize memory utilization and enhance
security by calculating the round key on-the-fly using an
external 128-bit register and ALUs, and storing only a single
round key per round within the subarray. Consequently, the
security risks associated with storing all round keys in the
memory are mitigated, while preserving operational efficiency
and improving utilization of data bits in the subarray.

B. Proposal 2. Enhanced MixColumns

The MixColumn process in the AES encryption introduces
a processing bottleneck, primarily due to its intensive XOR
computations. To accelerate this process, we propose to em-
ploy two additional sense amplifiers (SAs) for performing 4-
bit XOR calculation, as illustrated in Fig. 3 (a). While the
current two SAs are capable of detecting three voltage levels
of BL and BLB (activated when the voltage of BL or BLB
surpasses Vref and both voltages exceed or fall below Vref),
we intend to incorporate two supplementary SAs to identify
five bit cell data patterns. Fig. 3 (b) demonstrates how these
extra SAs distinguish five patterns. Since the output of the SA
is determined by comparing two input voltages, the first two
bits of SA output (representing the output of SA1 and SA2)
indicate whether both voltages are the same, and the last two

18



Voltage

Vref_B

Vref_A

1111
Bit Cell

Data
0111 0011 0001 0000

0 1 0 1SA

Output

VBL VBLB

0 1 0 0

1 1 0 0 1 0 1 0

1 0 0 0

BLB BL

0

0

0

1

SA� SA� SA� SA�

Vref_A
Vref_B

1 0 0 0

(a) (b)

Fig. 3. (a) Enhanced MixColumns using two additional SAs, and (b) voltage
levels for 5 data patterns.

bits show whether the voltage of BL or BLB is set to 1 or
not.

C. Proposal 3. Flexible Cryptographic Algorithm Support
with RISC-V Controller

Inspired by the IMCRYPTO architecture, we propose an
extension incorporating a RISC-V coprocessor to orchestrate
in-memory operations. Through coprocessor integration and
customized RISC-V instructions, the AES PIM architecture
gains the ability to support diverse algorithms, including the
AES decryption and other cryptographic algorithms like SHA-
2 or SHA-3. This enhancement empowers the PIM architecture
to execute in-memory operations in any order, facilitating
cryptographic algorithms that heavily utilize XOR and bit-
shifting operations.

V. CONCLUSION

In this paper, we reviewed prior work on the PIM archi-
tecture for running the AES algorithm and proposed some
possible improvements on the AES PIM hardware that we
can delve into. Our future work would be implementing the
proposed AES PIM architecture to maximize the hardware
throughput and support various cryptography algorithms to
enhance the security level with minimal silicon overhead.

REFERENCES

[1] M. Xie, S. Li, A. O. Glova, J. Hu, and Y. Xie, “Securing emerging
nonvolatile main memory with fast and energy-efficient aes in-memory
implementation,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 11, pp. 2443–2455, 2018.

[2] P. R. Sutradhar, K. Basu, S. M. P. Dinakarrao, and A. Ganguly, “An
ultra-efficient look-up table based programmable processing in memory
architecture for data encryption,” in 2021 IEEE 39th International Con-
ference on Computer Design (ICCD), 2021, pp. 252–259.

[3] D. Reis, H. Geng, M. Niemier, and X. S. Hu, “Imcrypto: An in-memory
computing fabric for aes encryption and decryption,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 5, pp. 553–
565, 2022.

[4] P. Chown, “Advanced Encryption Standard (AES) Ciphersuites for
Transport Layer Security (TLS),” RFC 3268, Jul. 2002. [Online].
Available: https://www.rfc-editor.org/info/rfc3268

[5] X. Zou, S. Xu, X. Chen, L. Yan, and Y. Han, “Breaking the von neumann
bottleneck: architecture-level processing-in-memory technology,” Science
China Information Sciences, vol. 64, no. 6, p. 160404, Apr 2021.
[Online]. Available: https://doi.org/10.1007/s11432-020-3227-1

[6] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A modern
primer on processing in memory,” 2022.

[7] D. Kim, C. Yu, S. Xie, Y. Chen, J.-Y. Kim, B. Kim, J. P. Kulkarni,
and T. T.-H. Kim, “An overview of processing-in-memory circuits for
artificial intelligence and machine learning,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 12, no. 2, pp. 338–353,
2022.

[8] J. Zhang, H. Naghibijouybari, and E. Sadredini, “Sealer: In-sram aes for
high-performance and low-overhead memory encryption,” in Proceedings
of the ACM/IEEE International Symposium on Low Power Electronics and
Design, 2022, pp. 1–6.

19


