
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Deep Reinforcement Learning-Based Sum rate 
Maximization in Tethered UAV-Aided IAB Network 

Yerin Lee  
Electronic & Electrical Eng.  

Hankyong National Univ. 
Anseong, South Korea 
qkek0379@hknu.ac.kr

Heejung Yu 
Electronic & Information Eng. 

Korea Univ. 
Sejong, South Korea 

heejungyu@korea.ac.kr

Howon Lee 
Electronic & Electrical Eng. 

Hankyong National Univ. 
Anseong, South Korea 

hwlee@hknu.ac.kr
 

Abstract—Tethered unmanned aerial vehicle base station (TUBS), which receives constant power from the ground, is a 
promising technology to solve the problem of UBS performance degradation and is suitable for use as base stations. In addition, 
the concept of integrated access and backhaul (IAB) has been introduced for efficient frequency resource utilization. Herein, 
we propose a double deep Q-network-based TUBS positioning and resource allocation to maximize the sum-rate in TUBS-
aided IAB networks. 
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Ⅰ. Introduction 
 

Tethered unmanned aerial vehicle base station (TUBS), 
which receives constant power from the ground, is a promising 
technology to solve the problem of UBS performance 
degradation and is suitable for use as a base station [1]-[3]. In 
addition, the concept of integrated access and backhaul (IAB) 
has been introduced and standardized for efficient frequency 
resource utilization [4]. Herein, we propose a double deep Q-
network (DDQN)-based TUBS positioning and resource 
allocation to maximize the sum rate in an aerial TUBS-aided 
IAB network. 

Ⅱ. Proposed DDQN-based Joint Optimization Algorithm 
 

We consider a two-tier IAB network consisting of MBS, 
TUBSs, and ground users. The MDP of the proposed algorithm 
is defined as shown in Table 1. 

 

Agent MBS TUBS 

State 𝑩𝑩(𝒊𝒊,𝒌𝒌)
𝑨𝑨𝟏𝟏 (𝝉𝝉), 𝑻𝑻𝐱𝐱𝒊𝒊(𝝉𝝉) 𝑩𝑩(𝒋𝒋,𝒌𝒌′)

𝑨𝑨𝟐𝟐 (𝝉𝝉), 𝑻𝑻𝐱𝐱𝒋𝒋(𝝉𝝉),𝑫𝑫𝒋𝒋(𝝉𝝉) 

Action 𝑩𝑩(𝒊𝒊,𝒌𝒌)
𝑨𝑨𝟏𝟏 , ±𝜟𝜟𝑻𝑻𝐱𝐱𝒊𝒊, 𝜟𝜟𝑻𝑻𝐱𝐱𝒊𝒊 = 𝟎𝟎 

𝑩𝑩(𝒋𝒋,𝒌𝒌′)
𝑨𝑨𝟐𝟐 ,±𝜟𝜟𝑻𝑻𝐱𝐱𝒋𝒋, 𝜟𝜟𝑻𝑻𝐱𝐱𝒋𝒋

= 𝟎𝟎,±𝜟𝜟𝒓𝒓,𝜟𝜟𝒓𝒓 = 𝟎𝟎,±𝜟𝜟𝜽𝜽,𝜟𝜟𝜽𝜽
= 𝟎𝟎,±𝜟𝜟𝝓𝝓, 𝜟𝜟𝝓𝝓 = 𝟎𝟎 

Reward 
𝑩𝑩𝑩𝑩
𝑵𝑵 {𝜮𝜮𝒊𝒊𝜮𝜮𝒌𝒌𝜮𝜮𝒄𝒄𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐(𝟏𝟏 + 𝚪𝚪𝒊𝒊,𝒌𝒌𝒄𝒄 ) + 𝜮𝜮𝒋𝒋𝜮𝜮𝒌𝒌′𝜮𝜮𝒄𝒄𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐(𝟏𝟏 + 𝚪𝚪𝒋𝒋,𝒌𝒌′𝒄𝒄 )⁡} 

∗ 𝑩𝑩𝑩𝑩: Total 
bandwidth 

∗ 𝑵𝑵: Number of 
subchannels 

Table 1. Markov Decision Process (MDP) design 
 

where 𝑩𝑩(𝒊𝒊,𝒌𝒌)
𝑨𝑨𝟏𝟏 (𝝉𝝉)⁡, 𝑻𝑻𝐱𝐱𝒊𝒊(𝝉𝝉)⁡denote subchannels and transmission 

power information allocated by the transmitter MBS to the 1st-
tier receiver 𝒌𝒌⁡(user, TUBS), respectively. 𝑩𝑩(𝒋𝒋,𝒌𝒌′)

𝑨𝑨𝟐𝟐 (𝝉𝝉), 𝑻𝑻𝐱𝐱𝒋𝒋(𝝉𝝉) 
denote subchannels and transmission power information 
allocated by the transmitter TUBS 𝒋𝒋  to the 2nd-tier receiver 
𝒌𝒌′⁡ (user), respectively, and 𝑫𝑫𝒋𝒋(𝝉𝝉) ∈ {𝒓𝒓𝒋𝒋(𝝉𝝉), 𝜽𝜽𝒋𝒋(𝝉𝝉), 𝝓𝝓𝒋𝒋(𝝉𝝉)} 
denote the position of TUBS 𝒋𝒋 in the spherical coordinates. Both 
the MBS and TUBSs have the common unified goal of 
maximizing the network-wide sum rate. Accordingly, the 
common reward can be represented as the sum of MBS and 
TUBSs. 𝜞𝜞  denote signal-to-noise ratio (SINR). Assuming 
received power 𝑷𝑷 , subchannel allocation vector element 𝒃𝒃 , 
interference 𝑰𝑰  from another base station, and noise 𝝈𝝈𝟐𝟐 , the 
SINR is calculated as 𝜞𝜞 = 𝑷𝑷𝑷𝑷

𝑰𝑰+𝝈𝝈𝟐𝟐. 

Ⅲ. Simulation Results & Conclusion 
 

 
Fig. 2. (a) Accumulated average reward vs. episode (b) Test results 

across 200,000 trials 
 

We consider fixed TUBS 3D positioning (FT3P), fixed 
transmission power allocation (FTxPA), fixed subchannel 
allocation (FSA), random action, and reward-optimal as 
benchmarks to analyze the performance of the proposed 
algorithm in a three-agent scenario. The 𝑩𝑩𝑩𝑩 is 20 MHz and 𝑵𝑵 
is 3. As shown in Fig. 2(a), the proposed algorithm converged 
closely to the optimal and outperformed the other benchmark 
algorithms. Specifically, the proposed demonstrated gains of 
8.97 %, 13.54 %, and 37.2 % compared with the FSA, FTxPA, 
and FT3P algorithms, respectively. Fig. 2(b), shows that the 
performances of the algorithms deteriorated slightly as the 
moving speed increases. Nevertheless, the proposed algorithm 
consistently outperformed the benchmark algorithms and 
maintained relatively high performance levels across all moving 
speeds.  
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