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Abstract—In the development of autonomous driving robots
and related technologies, the successful implementation of SLAM
(Simultaneous Localization and Mapping) is crucial. To this
end, it is very important to estimate the current position and,
orientation of the robot while efficiently constructing a map
of the environment. Various algorithms have been proposed so
far, utilizing LiDAR, graph-based methods, and inertial systems.
However, these methods share common issues, such as high
computational and resource costs for map construction, as well
as limitations when operating in dynamic environments with
numerous moving objects, such as inside large shopping mall. To
address these challenges, we propose an algorithm for relative
coordinate inference using distance measurement/trilateration,
which is applicable even with monocular cameras.

Index Terms—SLAM, Localization, YOLO, Object detection,
Distance estimation, Trilateration

I. INTRODUCTION

Autonomous driving technology is being applied in vari-
ous fields. In order to ensure efficient localization and path
planning operation, the application of SLAM (Simultaneous
Localization and Mapping) technology is often utilized [1]-
[5]. SLAM allows a robot to create a map of its surroundings
and track its real-time position within that map. In the context
of indoor environments and without access to GPS, SLAM
operates as follows.

First, the robot moves through the environment, collecting
sensor data and uses it to create a map of the surroundings.
Various techniques, including occupancy grids, feature-based
maps, and point clouds, can be employed for map generation.
After mapping the environment, next the robot estimates the
current position and orientation (pose) of the robot. The robot
utilizes visual information from cameras, data from distance
measurement sensors like LiDAR, or other sources to estimate
its position. After finishing localization, the robot uses the
generated map to decide where to move next and plan paths.
This is particularly useful for autonomous exploration or

This work was partly supported by the Institute of Information com-
munications Technology Planning Evaluation (IITP) grant funded by the
Korea government (MSIT) (No.RS-2022-00155885, Artificial Intelligence
Convergence Innovation Human Resources Development (Hanyang University
ERICA)), the National Research Foundation of Korea(NRF) grant funded
by the Korea government (MSIT) (No.NRF-2022R1F1A1073208) and Korea
Institute for Advancement of Technology (KIAT) grant funded by the Korea
Government (MOTIE) (P0008691, HRD Program for Industrial Innovation).

979-8-3503-1327-7/23/$31.00 ©2023 IEEE

Ji-Sung Park
Dept. of Applied Artificial Intelligence
Major in Bio Artificial Intelligence
Ansan, Republic of Korea
jsdms316@gmail.com

148

Dong-Ho Lee
Dept. of Applied Artificial Intelligence
Major in Bio Artificial Intelligence
Ansan, Republic of Korea
dhlee72 @hanyang.ac.kr

performing tasks in an environment. Over time, errors may
accumulate in the estimated robot position and the generated
map. Loop closure identifies revisited locations and corrects
these errors. By recognizing previously visited places, the
robot can refine the map and adjust the estimated trajectory.

However, when applying SLAM in specific environments,
several issues arise. Errors in the process of location estimation
and loop closure system from the following weaknesses inher-
ent in SLAM: (1) Environments with high human traffic or dy-
namic elements, such as hospitals or complex shopping malls,
pose challenges for SLAM algorithms. Existing algorithms
struggle to cope with such dynamic conditions. (2) SLAM
inherently requires significant computation and computing
resources. Real-time exploration, map generation, and position
estimation tasks demand substantial processing power, leading
to increased hardware costs. (3) SLAM’s performance heavily
relies on sensor availability and quality. In many cases, high-
performance sensors such as depth cameras, inertial sensors,
and radar systems are required, adding to the overall system
cost.

To address these challenges, this paper proposes an algo-
rithm to enhance the position estimation of SLAM. By assum-
ing scenarios where the robot does not deviate significantly
from a specific location, a distance estimation and trilateration
technique using relatively inexpensive sensors like monocular
cameras is employed. Learn the size and positions of static
elements that persistently exist in specific locations and do
not change its size or position. This learned information can
then be utilized to enable location estimation using only a
monocular camera, ensuring efficient localization and path
planning. This approach offers the following contributions:

e Robust Localization Method for Special Environments:
An implementation of robust localization methods suit-
able for environments with high human traffic or indoor
limitations, such as hospitals or shopping malls.

o Cost Reduction in System Implementation: By enabling
position estimation with monocular cameras, system im-
plementation costs can be reduced.

o Simplified Computation with a Basic Algorithm: Im-
proved calculation speed is achieved through a sim-
ple distance-based position estimation approach between
simple objects and agents using YOLO-based object
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recognition.

II. RELATED WORKS

Visual SLAM [6] is a type of SLAM technology that utilizes
visual information to simultaneously estimate the robot’s posi-
tion and create a map of the environment. Visual information
is primarily obtained by analyzing images captured through
cameras. When analyzing images, it can be categorized into
pixel-based SLAM, which analyzes images at the pixel level,
and feature-based SLAM, which extracts and analyzes key fea-
tures. Recent state-of-the-art SLAM techniques predominantly
use feature-based SLAM [7]. Visual SLAM offers advantages
such as low sensor dependence and suitability for real-time
processing.

As a branch of Visual SLAM, this approach involves
representing data and constraints in the form of a graph when
estimating the robot’s pose or exploring the surrounding en-
vironment. It enables consistent and accurate pose estimation
and map creation in various environments, and facilitates the
complex integration of multiple sensors [8].

LiDAR SLAM is a method that utilizes laser light sensors
to measure distances to surrounding objects and construct
maps. It offers high precision and strong obstacle detection
capabilities. Additionally, its fast distance measurement speed
makes it suitable for real-time operations [9], [10].

ORB-SLAM has long been at the forefront of SLAM
technology [11]. It utilizes features such as FAST [12] and
BRIEF [13] to detect image features. Subsequent research has
improved both accuracy and speed by incorporating inertial
sensors [14] and implementing process parallelization [15].

However, as mentioned in previous section, there exists
a common weaknesses in these SLAM algorithm, which is
struggling with dynamic conditions and requiring high com-
putational cost. We aim to propose an economically viable
localization algorithm that can address these weakness.

III. BACKGROUND AND METHODS

The proposed algorithm assumes continuous usage in the
same location. The elements used for localization are station-
ary elements existing in that location, and a learning process
is required for each machine to recognize these elements. It
would be suitable for a continuously operating guidance robot
in a single complex shopping mall or a hospital, for instance.

A. Yolov8

YOLO predicts bounding boxes and classes for all objects
in the image in a single pass analysis. Unlike traditional
object detection methods, it processes the entire image at once
without dividing it into grids, enabling real-time processing
[16]-[20].

B. Distance estimation

Distance measurement with monocular camera [21] in such
environments is achieved through distinctive landmark features
that are fixed and uniquely identifiable. If a landmark is N
and the camera is C, the distance Dy between these two
elements can be calculated as follows:

Wy X F'L
Dye = —— (1)

sn

Here, w,,, represents the actual width of element N, and
wsy, denotes the width of element IV in the camera view. In the
experimental process of this paper, the units for these values
were set to centimeters (cm) and pixels, respectively. FL refers
to the camera’s focal length. In the case of the Realsense
DA455i camera used in the experiment, the focal length is set to
1.95mm. However, as shown in equation (1), the focal length
need to be converted to a value in pixel units to calculate
distance Dy in centimeters. Therefore, the focal length was
computed based on imagery captured at a fixed distance D as
follows:

FL = M (2)

Wyrn
C. Trilateration with considering errors

When three or more fixed elements are detected on the
screen, the current coordinates of the robot are calculated
through trilateration. Let K (x,y) denote the current position
of the desired camera, and let N;(X;,Y;) represent the fixed
coordinates for the detected ¢th object. If D; represents the
measured distance between object N; and camera K, the
following equation can be obtained:

D? = (X; —2)? + (Y; — y)? 3)

In general, during the process of performing trilateration,
the following equation is derived and used:

x=(ATA)"'ATb 4)

where the desired current camera’s position vector x and
constants A, b are defined as follows [22]:

w
2(X;1 — Xo) 2(Y1 — Yo)
2(Xs — X4) 2(Y2 — Y1)
Ao ; : (6)
2(Xn _Xn—l) 2(Y — Y- )

Do — D12+ X12 — Xo? + V12 - Y2
D12 — Dy% + X% — X12 + Y2 — vy 2
b= : (7)
Dn712 - Dn2 + an - AXPnfl2 + Yn2 - Yn712

where n represents the number of fixed elements used for
position estimation, and is typically set to the dimension
specified plus 1 in order to determine the elements. However,
there is a potential issue with this calculation method. In cases
where errors are easily introduced, such as with monocular
camera-based position estimation, even slight errors can result
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in significant deviations in the estimated position. Therefore,
this paper applies error bounds to the measured distances to
account for this issue and calculate the estimated region. Un-
like the traditional trilateration method, this approach allows
for more robust position calculation in the presence of errors.
The estimated region can be defined as the set K which is
satisfying following equation:

K= {(m,y)Wi(Di—err)Q < (ac—Xi)Q—i—(y—Y;)2 < (Di+er7’)2]

®)
Here, the error range err determines the thickness of each ring
in Fig. 1 example, and the calculated set of points K represents
the shaded area with blue dots. If no region satisfying the
above equation exists, the value of err can be increased and
the algorithm can be rerun to find a solution. The proposed
algorithm involves finding all points that is included in set K
satisfy equation (8), and then calculating in which region the
highest density of points exists. The user can adjust and control
the density of points and the size of the regions according
to their preferences. However, this may come at the cost
of increased computational effort. By excluding information
about the current position each time and utilizing only detected
fixed elements to estimate the region, the problem of error
accumulation can be mitigated.

IV. EVALUATION

In this paper, a newly generated dataset was utilized during
the experimental process. Given the nature of the proposed
system, the dataset must adhere to specific criteria, where
each label accurately corresponds to a unique object. This
requirement varies depending on the applied context. To create
a dataset that satisfies these conditions, various images of
internal elements within different hospitals available on the
web were used.

A. Environment

1) Robot Environment

« ROS2 Foxy
o Turtlebot3 - Waffle Pi model
o Realsense Camera D455i1

2) Computer Environment

Operating System: Ubuntu 20.04.6 LTS 64-bit

o CPU: 11th Gen Intel® Core™ i9-11900 @ 2.50GHz
x 16

« GPU: NVIDIA GeForce RTX 3090 x 2

« RAM: 96GB

B. Dataset

The dataset contains a total of 10 labels, and there are 560
data samples in the dataset. For training, 90% (504 samples)
were used, and for validation, 10% (56 samples) were utilized.
The training results are as follows. The training and validation
results are presented in Fig. 2.

Fig. 3 depicts the training results of yolov8 utilizing the
dataset. The pre-trained model yolov8l was employed, with 20
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Fig. 1. Example of calculating the range for the expected position using
error bounds. The thickness of each ring means amount of error to regard.
The region colored with blue dots is the estimated camera’s position.

epochs and a batch size of 16 during training. In Fig. 3 (b), the
validation results demonstrate accurate differentiation of most
fixed elements. However, given the relatively limited dataset
size, there is a potential risk of overfitting. Therefore, for actual
application, it is recommended to use a larger volume of data.

C. Section estimation evaluation

The experimental objectives and evaluation criteria are as
follows.

1) Place fixed elements and cameras in arbitrary locations
and compare the detection capabilities and distance
measurement accuracy in YOLOVS.

2) Utilize the detected fixed elements to estimate the cur-
rent region and compare the accuracy.

These objectives outline the goals of the experiments, and the
evaluation criteria focus on comparing detection abilities, dis-
tance measurement accuracy, and region estimation accuracy
under different conditions and scenarios.

The experiments were conducted by moving the camera’s
position based on fixed elements and predicting the region in
which the moved camera is located. In one experiment, the
positions of fixed elements were altered to observe the impact
of such changes, while assessing the algorithm’s robustness.
Table 1 presents a subset of the experimental results. Each
Fixed element is used as object IV, in equation (1). Experiment
(A), (B), and (C) have correct result for estimating even if there
are some errors between estimated distance and real distance
between camera and each fixed element. Fig. 4 illustrates the
distances and regions calculated by the algorithm for each
experiment in Table 1. In graph (B), the thickness of each ring
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Fig. 2. The results of fine-tunning YOLOV8 using the generated dataset.
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Fig. 3. The results of fine-tunning YOLOVS using the generated dataset. (a) Ground-truth of validation set. (b) Prediction of validation set.

TABLE 1

SAMPLES OF EXPERIMENTAL RESULTS.

Fixed element 1 Fixed element 2 Fixed element 3
Camera position Real Estimated Real Real Estimated Real Real Estimated Real Estimated Section
position distance distance | position distance distance | position distance distance
(A) (30, 0) (0, 90) 88.20 94.87 (60, 90) 93.8 94.87 (0, 120) 164.80 123.70 (15 ~ 45, -15 ~ 15)
(B) (30, 30) (0, 90) 61.13 67.08 (60, 90) 67.69 67.08 (0, 120) 104.60 94.87 (15 ~ 45,15 ~ 45)
©) (30, 30) (30, 60) 49.00 30.00 (60, 90) 69.64 67.08 (0, 120) 97.12 94.87 (15 ~ 45,15 ~ 45)
(D) 0, 0) (0, 90) 96.47 90.00 (60, 90) 109.43 108.17 | (0, 120) 205.25 120.00 | (15 ~ 45, -45 ~ -15)
(E) (-30, 30) (0, 90) 67.11 67.08 (60, 90) 127.67 108.17 | (0, 120) 87.73 94.87 (-75 ~ -45, 45 ~ 75)

2The unit of given table is centimeter (cm). The rows with bold entries are the correct estimations
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Fig. 4. The results of fine-tunning YOLOVS using the generated dataset.
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shape is greater compared to the other graphs, which signifies
a larger range of error. Interestingly, it was observed that even
with this increased error range, a reasonably accurate estima-
tion of the regions is achievable. However, when observing
the graphs for (D) and (E), it’s evident that despite having a
narrower error range, the results are inaccurate. A common
factor in these two experiments is the significant distortion
caused by the angle between the camera and the objects. It can
be concluded that dealing with errors induced by this angle-
related distortion proved to be challenging.

V. CONCLUSION

This paper proposes an algorithm to enhance the localization
and map generation in fixed environments for autonomous
robots. The experimental results confirm the effectiveness of
the proposed approach in achieving robust localization and
region estimation in various settings. Furthermore, the use
of a relatively inexpensive monocular camera demonstrates
the potential to achieve accurate position estimation while
reducing implementation costs.

However, since there are some limitations to this study, we
suggest the following subsequent research to address these
issues:

o A significant source of error in distance measurement
to fixed elements is the size of the field of view.
Especially in areas like corridors, where front-facing
views of fixed elements are scarce, there is a need for
distance estimation methods that can account for this
limitation. To resolve this issue, research like storing
object recognition information by rotating the camera in
a panoramic fashion, or storing information about short-
distance movements of the robot could be conducted.
The current distance measurement algorithms are sus-
ceptible to distortions such as object rotation or objects
positioned at the camera’s edges. Especially for the same
object, the size of the object detection bounding box can
vary depending on the viewing angle. This can lead to
significant errors in distance measurement. To address
these challenges, it may be beneficial to apply algorithms
that estimate depth from images through learning in
monocular cameras. This could potentially enhance the
accuracy of distance calculations.
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