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Abstract—Large Language Models (LLMs) have demonstrated
outstanding performance in general domain knowledge inference
such as arithmetic reasoning, commonsense reasoning, and open-
domain question answering. Traditional LLMs were mainly
developed and serviced by big tech companies as commercial,
making it nearly impossible for researchers to access parameters.
However, the recent emergence of non-commercial LLMs has
led to ongoing research efforts to surpass commercial LLMs in
specific areas using task-specific or domain-specific LLMs. In
this study, among many tasks or domains, we focus on the high-
level knowledge-demanding medical domain, particularly Auto-
matic Diagnosis System (ADS). We evaluated whether current
representative LLMs can perform disease diagnosis effectively
and whether they have the potential to assist doctors in clinical
situations. Moreover, we also observe the overall quality of
responses to whether each LLM can accurately diagnose based
on understanding the patient’s basic information such as age, sex,
underlying diseases, and family history, and explore whether non-
commercial LLMs are likely to outperform commercial LLMs in
ADS.

Index Terms—Automatic diagnosis system, large language
models, medical domain knowledge

I. INTRODUCTION

Large Language Models (LLMs) are powerful models
trained on massive amounts of text tokens and billions of
parameters. These models have the capability based on their
immense power to understand the given context through In-
Context Learning (ICL), without the need for additional fine-
tuning. Traditional research and development of LLMs were
primarily carried out by big tech companies with significant
computing resources and capital due to challenges such as
securing computing resources and data collection.

Prominent commercial LLMs include Google LaMDA[1]
with 137 billion parameters, OpenAl GPT-3[2] with 175
billion parameters, and Google PaLM[3] with 540 billion
parameters. These models have not opened the pre-trained
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weights and training data publicly due to the reasons like
ethical or copyright issues with the data and considering the
model itself as an asset. Instead, they primarily release techni-
cal reports containing performance metrics and experimental
results. Additionally, these commercial LLMs were primarily
focused on achieving the highest performance through large
model sizes and lots of data during their research. It requires
an enormous computing budget for inference thus it is virtually
impossible with typical methods. Furthermore, it is nearly im-
possible to create task-specific models by accessing parameter
levels for researchers.

Meta recently released the Large Language Model Meta Al
(LLaMA)[4], an instruction-following model that surpasses the
performance of existing benchmarks in most scenarios with 13
billion parameters which are about ten times fewer than GPT-3.
They released the models ranging from 7 billion to 65 billion
parameters in a limited open-source format. Unlike previous
commercial LLMs, it could be opened to the public due to it
was pre-trained using only publicly available data. There are
numerous attempts in process based on it, including Stanford
Alpaca[5] performed instruction-tuning via Supervised Fine-
Tuning (SFT), and Vicuna[6], which is intensely trained on
dialogue datasets for chatbot systems.

The general domain knowledge embedded within these
LLMs has shown remarkable abilities as a general task solver
in various fields including arithmetic reasoning, commonsense
reasoning, and open-domain question answering[3]. Numerous
studies are currently evaluating the capabilities of LLMs and
exploring various ways to apply them in diverse fields. Partic-
ularly in the medical and clinical fields, ChatGPT achieved a
passing score on the US Medical Licensing Exam (USMLE),
and it demonstrated a high accuracy of more than 83% on
average under zero-shot conditions when taking the exam with
GPT-4[7]-[8]. Furthermore, the quality and empathy level of
responses to patient questions were found to be higher than
those of actual doctors[9]. However, exam-related questions
like USMLE may not be suitable for various real clinical
situations, and the capability for this exam is not perfect[8].

We focus on the field of Automatic Diagnosis System
(ADS) among the diverse medical and clinical fields. ADS is
a system that assists doctors by suggesting potential diseases
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that might have been overlooked. It can automatically diagnose
patients based on the information provided by the patient,
regardless of the format of data, such as medical dialogue,
medical records, X-rays, CTs, and MRIs. In this context,
the system can be designed to utilize a single type of data
for diagnosis or use a multi-modality approach to combine
multiple data types for more accurate and diverse diagnostics.
However, in this study, we limit the scope of ADS to basic
patient information with a single type of data that includes
symptoms, age, gender, and family history which had been
completely de-identified. Such information can be used to pro-
vide more appropriate medical services to patients by checking
the condition before meeting with a doctor and can also be
utilized during disease diagnosis when a patient consults a
doctor at the hospital. Existing ADS research has utilized
external knowledge about the relation between symptoms and
diseases to enhance the accuracy of diagnoses. However,
knowledge-based disease diagnosis can be challenging when it
comes to diseases outside of the existing knowledge base. On
the other hand, LLMs have potential use as an ADS since they
have been trained on more comprehensive knowledge covering
various diseases and symptoms.

With these potential, evaluating the capability of disease
diagnosis for LLMs is need for ADS research. Therefore, we
explore how helpful the general knowledge of various LLMs
is in disease diagnosis and whether they can serve as ADS
to assist doctors in real clinical situations. Unlike previous
studies, we measure the capabilities of disease diagnosis using
actual case study data focusing not on how well the LLMs
mimic doctor-like language but on how well they diagnose
diseases exactly and provide information about related con-
ditions with minimal patient information. To the best of our
knowledge, there have been few efforts to evaluate the disease
diagnostic capabilities of multiple commercial and publicly
available LLMs using patient basic information.

II. RELATED WORKS
A. Automatic Diagnosis System (ADS)

With increasing data availability for various ADS appli-
cations and advancements in Artificial Intelligence (Al), the
demand for automated disease diagnosis is rising in both
research and industrial fields. Recently, learning-based ADS
actively utilizes Transformer[10] architecture, which demon-
strates outstanding performance in natural language processing
and image processing. Various research is ongoing based
on this architecture such as making the ADS data public
and evaluating them; developing medical dialogue systems
using patient-doctor data; and using multi-modality, includ-
ing symptom-related texts and visual information for symp-
toms[11]-[14].

Concretely, The issue was raised that it is difficult to explain
some symptoms in words and that people are not familiar with
many medical terms used for symptom expression. To handle
this problem, proposed a multi-modal disease diagnosis virtual
assistant that diagnoses diseases using both patient symptom

images and symptom utterances[11]. In [12], COVID-19 med-
ical dialogue data in English and Chinese was collected to
develop a medical conversation system capable of providing
related consultations when difficult to visit hospitals such as
during a pandemic. They attempted to alleviate overfitting with
a masked-token prediction due to the collected dataset was
not large in quantity. In [13], pointed out that the existing
reinforcement-based or non-reinforcement-based methods only
focus on disease diagnosis and ignore the patient’s symptoms.
For that reason, the system uses a Transformer decoder-
encoder and tokenizes both symptoms and diagnoses to at-
tend to the symptoms and diagnostic information. However,
this approach diagnoses diseases based solely on symptoms,
excluding basic information such as the patient’s age, sex, and
family history.

Recently, there has been an increasing volume of research
leveraging reinforcement learning to enhance the accuracy of
disease diagnosis. In [14], built a dataset extracting symptoms
from patient-doctor conversation data, and proposed a dialogue
system framework for disease identification. Furthermore,
some studies have used knowledge graphs between the relation
of diseases and symptoms to improve disease diagnosis accu-
racy. However, constructing such graphs is challenging without
abundant medical knowledge, and it is difficult to respond to
diseases that do not exist within the graph[15]-[16].

B. Large Language Models (LLMs)

There were some problems with the initial LLMs. GPT-
3 can generate text that may contain bias, hate speech,
misinformation, or sensitive or confidential information since
it has been pre-trained on vast amounts of data collected
from the web. To relieve these problems, InstructGPT[17] and
ChatGPT[ 18] have been improved with learning methods such
as SFT and Reinforcement Learning through Human Feedback
(RLHF), enabling more human-like answering and outputting
answers that humans prefer. These models possess the ability
to speak more human-like and provide answers that align with
human preferences.

Thanks to the open-sourced release of LLaMA which
is an accessible-size LLM, task-specific or domain-specific
LLM research have accelerated. Particularly, research is being
conducted to utilize LLMs in specific fields by instruction-
tuning or SFT on task-specific or domain-specific datasets over
medicine, healthcare, law, and finance[19]-[22]. This tuning
process not only enables customization of LLMs specialized
in specific domains according to user intent but also addresses
the limitation of commercial LLMs like ChatGPT, which
have been unable to learn information since September 2021,
making it hard to incorporate the latest information.

In the medical field even after completing the tuning pro-
cess, there are no clear metrics to measure the performance for
field or task-specific LLMs. For that reason, previous research
evaluated the quality of generated responses aspect of how
doctor-like they are, usefulness, smoothness, safety, and other
factors using the same evaluation metrics as existing text
generation models. Additionally, some studies evaluated the
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ability to solve standardized exams such as the US Medical
Licensing Exam (USMLE)[23]-[24].

Concretely, [23] has collected 100,000 patient-doctor con-
versations from online medical consultation platforms and
fine-tuned the smallest LLaMA model which has 7 billion
parameters to answer questions about users’ natural language
symptom descriptions in a manner like a real doctor’s con-
sultation. However, this approach is limited to performing a
Question-and-Answer (Q/A) role and can only provide a single
answer per question, unlike a chatbot which can engage in
a continuous conversation by retaining all past interactions.
Furthermore, they measured the similarity between the re-
sponse of the LLM and the response of the real doctor, which
means that even if the diagnosis is not accurate, achieving
high performance is possible if the LLM responds well in a
doctor-like manner.

In [24], they employed not just the patient-doctor conver-
sation data from [23] but also gathered many comprehensive
medical data sources, including flashcards utilized by medical
students and information from the Stack Exchange medical
sciences platform. LLaMA models with 7 billion, 13 billion,
and 30 billion parameters were fine-tuned using these datasets
and measured the accuracy for the USMLE, which demands
expert medical knowledge. However, these standardized test
questions have limited scenarios and cases depending on the
number of questions, making it challenging to comprehen-
sively cover the diverse situations present in the clinical field.

In addition to this, some researchers are targeting to mimic
the role of specialists by targeting specific sections rather
than focusing on general medical knowledge. They are also
automating various aspects of research, such as collection, pro-
cessing, and analysis of disease-related data, through prompt-
based approaches[25]. This automation aims to simplify labor-
intensive tasks that were traditionally done manually and
automate the entire data collection, processing, and analysis
paradigm, thereby contributing to advancements in the field.

III. METHODS
A. Dataset

Due to the difficulty, sensitivity, and specificity of col-
lecting the medical data, we have utilized publicly available
medical data that has been removed critical and sensitive
personal information. We evaluated the diagnostic capabili-
ties of various LLMs using PolyMed[26] dataset, which is
structured in a symptom-disease format. The dataset was
collected from patient-doctor conversations from a Chinese
online healthcare platform. In comparison to existing datasets
for ADS, it contains a significantly wider type of diseases and
symptoms, as well as a larger volume of data. It does not just
contain symptom and disease information but also includes
departments, age, gender, family history, the background of the
symptom manifestation (e.g., intense exercise), family history,
and underlying disease records. The data other than symptoms
and diseases can be NULL values.

The data consists of training and testing data in highly
flexible JavaScript Object Notation (JSON) format. Fig. 1. is

a sample of the training data. The test data are composed
of single data, which diagnoses a single disease, multi data,
which diagnoses multiple diseases, and unseen data, which
diagnoses diseases not included in the training data using pre-
built external knowledge. We selected the single data from the
test dataset to evaluate the diagnostic performance of LLMs.
Table I shows the number of training and testing data as well
as the unique number of diseases and symptoms.

B. Models

We chose a total of six models for the evaluation, which
encompasses well-known commercial LLMs as well as pub-
licly accessible non-commercial LLMs for research purposes.
OpenAl’s GPT-3.5 series was selected as the commercial
LLMs: Text-Davinci-003, GPT-3.5-Turbo, and Text-Davinci-
002. Text-Davinci-003 is a model that applied SFT and RLHF
to GPT-3, GPT-3.5-Turbo is a lightweight model optimized
for chat applications with SFT and RLHF applied like Text-
Davinci-003, and Text-Davinci-002 is a model that applied
only SFT without separate RLHF. Additionally, we evaluated
the Google Bard[27], a model released relatively recently com-
pared to the others. Bard is a lightweight and optimized version
of Google’s existing LLM LaMDA, with RLHF applied for
high-quality responses.

As for the opened LLMs, we selected the Alpaca model,
which was fine-tuned LLaMA with various instruction sets for
ICL capabilities. The Alpaca model encompasses a range of
parameters, from 7 billion to 65 billion, and similar to LLaMA,
larger models are known for enhancing overall performance.
However, the evaluation was only carried out for the small
models Alpaca-7B and Alpaca-7B LoRA[28] model due to

{
"train": [
{
"id": 4760,
"category": "Ophthalmology",
"sex": "M",
"age": 29,
"family_history": ["Hypertension"],
"background": ["Alcohol consumption"],
"underlying_disease": ["Upper
respiratory infections"],
"diagnosis": ["Conjunctivitis"],
"symptoms": ["Hyperemia"]
}
]
}
Fig. 1. A sample of the PolyMed.
TABLE 1
COMPOSITION OF THE POLYMED DATASET
Number of Unique Unique
Data Type Data Diseases Symptoms
Train 3636 57 352
Test (single) 909 57 248
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constraints in computing resources. LoRA is a technique that
can significantly reduce the amount of computation by project-
ing the query, key, and value attention matrix of Transformer
self-attention into a lower rank through matrix decomposition.
All evaluations requiring computation for the opened LLMs
were performed on a Google Cloud Platform (GCP) environ-
ment with 4 NVIDIA 40GB A100 GPUs.

C. Metrics

To evaluate the diagnostic performance of LLMs using
basic patient information, we set up the top-1, top-3, and
top-5 accuracy as metrics. Considering the data was extracted
from doctor-patient conversations, it may be challenging to
accurately predict diseases based solely on the provided patient
symptom information. Therefore, we have considered when
the response and the label belong to the following conditions
as a correct diagnosis:

a) Synonyms: If the predicted disease is synonymous
with the label, it is considered a correct diagnosis. The list of
synonyms was derived from the publicly available synonym
list which is provided by Asan Medical Center, ranked 29th
in the 2023 World’s Best Hospitals List[29].

b) Category Matching: PolyMed dataset includes some
labels that represent extensive categories like Allergic disease,
Respiratory infection, Viral infection, or combined diseases
such as Laryngopharyngitis (laryngitis + pharyngitis) and Bal-
anoposthitis (balanitis + posthitis). Since pinpointing a precise
prediction for these labels can be challenging, we determined
that the prediction is correct if the predicted disease is included
in the diagnosis.

c) No distinction  between  Chronic/Acute  or
Allergic/Non-allergic conditions: The symptom diagnostic
outcomes of the dataset were based on a doctor’s decision,
either through conversations with patients. As it is difficult to
determine the type or duration of a disease based solely on
symptoms can be challenging, a prediction was considered
correct if the same disease was predicted regardless of
whether it is chronic or acute, allergic or non-allergic.

Table II refers to examples of prediction alignment and
correct answers based on these various scenarios.

D. Preprocessing

To use the raw JSON data from the patient’s basic infor-
mation as input for LLMs, the following preprocessing steps
were taken:

TABLE I
EXAMPLE OF THE ALIGNMENT BETWEEN PREDICTIONS AND LABELS

a) Format Transformation: LLMs typically have a max-
imum input length, providing the data to the LLMs in its
original format can be inefficient, and cannot be potentially
expected to output to the desired response. Therefore, all fields
in the JSON excluding those representing the patient ID, the
category indicating the medical department, and the diagnosis
field indicating the diagnosis result, were consolidated into
a single input sequence with line breaks (\n) as separators.
In cases where a field contained more than two values, they
were delimited by commas. Notably, the diagnosis field’s value
was extracted independently to serve as labels for evaluation
purposes.

b) Instruction Tuning: Writing good instruction is es-
sential for obtaining high-quality answers from LLMs. To
measure the diagnostic performance of LLMs through patient
data, we first assigned the role of a doctor to LLM. Then,
we informed the LLM of the task to diagnose the top-5
diseases based on the patient’s information. And finally, we
wrote emphasis points, requesting list-form answers without
additional explanations and in descending order of probability.
The emphasis points were written capitalized since we found
that LLMs often disregarded the emphasis points when not in
uppercase.

Table III represents an example of preprocessing the data
in Figure 1.

IV. EVALUATION

A. Quantitative Evaluation

All responses from every LLM for the evaluation were
collected as of July 15th. The responses of OpenAl’s GPT
series models were collected by the official Application Pro-
gramming Interface (API). As Google did not provide an
official API for Bard yet, we collected the responses by
manually. In Table V, the GPT-3.5-Turbo model showed the
highest top-1 accuracy (33.99%), top-3 accuracy (54.56%),
and top-5 accuracy (61.6%), followed by the Text-Davinci-
003 model with top-1 accuracy (30.91%), top-3 accuracy
(46.86%), and top-5 accuracy (54.45%). These results are
currently considered too low for application in actual clinical
situations.

TABLE III
INSTRUCTON AND AN EXAMPLE OF THE PREPROCESSED DATA

Prediction Label Answer Note
Common cold  Respiratory infection (6] Synonym
Pharyngitis Laryngopharyngitis (6] Category matching
Roseola Exanthem (6] Synonym
Common cold COVID-19 X Incorrect answer

Preprocessed
Instruction
Input Label

You are in the role of a Sex: M\n Age: 29\n
doctor. Please diagnose Family history:

the top-5 diseases Hypertension\n
following the patient’s Background: Alcohol
information and LIST consumption\n Conjunctivitis

THEM WITHOUT
ANY DESCRIPTION
IN ORDER OF HIGH

POSSIBILITY.\n

Underlying disease:
Upper respiratory

infections\n Symptoms:

Hyperemia.
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TABLE IV
FAILED ANSWER CASES FOR EACH MODEL

Patient Information Model Response Label
Sex: W
Age: 31 As an Al language model, I cannot provide real-time medical .
Symptoms: Headache, Neck pain, GPT-3.5-Turbo diagnosis or advice. ... Laryngopharyngitis
Phlegm
Sex: M 1. Fatty liver
Age: 27 2. Insomnia
Underlying disease: Fatty liver Text-Davinci-002 . . Gastritis
. . 3. Abdominal bloating
Symptoms: Insomnia, Abdominal 4. Abdominal pain
bloating, Abdominal pain ’ p
Sex: M
Age: 16
Background: Masturbation Bard I'm a text-based Al and that is outside of my capabilities. Chronic prostatitis

Symptoms: Urinary frequency,
Delayed urination

Sex: M The top
Age: 26
Symptoms: Foreign body sensation

5 diseases that could be causing the symptoms are:
1. Gastroesophageal reflux disease (GERD)
2. Laryngopharyngeal reflux disease (LPR)

in the throat (globus sensation), Alpaca-7B 3. Gastroesophageal reflux disease (GERD) Chronic gastritis
Burping, Chest pain, Chest tightness, 4. Gastroesophageal reflux disease (GERD)
Neck pain 5. Gastroesophageal reflux disease (GERD)
Sex: M
. Age: 2 . Alpaca-7B LoRA Diarrhea, High fever, Rash, Influenza, Gastroenteritis. Exanthem subitum
Symptoms: Diarrhea, High fever,
Rash

TABLE V
EVALUATION RESULTS FOR LARGE LANGUAGE MODELS

Top-1 Top-3 Top-5

Model Accuracy Accuracy Accuracy
(%) (%) (%)
Text-Davinci-003 30.91 46.86 54.45
GPT-3.5-Turbo 33.99 54.56 61.6
Text-Davinci-002 27.83 44.22 53.35
Bard 30.8 45.54 53.57
Alpaca-7B 30.03 45.21 5291
Alpa-7B LoRA 28.6 41.8 48.51

Even the Alpaca model with the fewest parameters, which
has 7 billion parameters, showed less than a 1% difference
from Bard and Text-Davinci model without fine-tuning. Better
performance can be measured if the evaluation is performed
in a model with more parameters. Unlike commercial LLMs
where direct parameter access is virtually impossible, pre-
trained weights of Alpaca are available to researchers that en-
able fine-tuning. Therefore, the potential to improve diagnostic
performance is limitless.

Moreover, we attempted full parameter tuning on the
Alpaca-7B model using training data of the PolyMed, rather
than simply evaluating diagnostic ability. However, training
was difficult due to the small number of training data (3,636)

relative to the number of parameters (7 billion), and easily
overfitted on the training data. We also attempted to fine-
tune a fraction of approximately 0.12% (8 million) of the
total learnable parameters using LoRA. However, we observed
only a marginal 1% enhancement in diagnostic accuracy upon
proceeding with the evaluation.

B. Qualitative Evaluation

Finally, we observed the overall trend of how well the
LLMs understand patient information and instructions and can
provide responses well. Table IV shows the failure cases pro-
viding diagnoses for each LLM except Text-Davinci-003. For
GPT-3.5-Turbo and Bard, they made some outputs that could
not perform the doctor role. Furthermore, some responses
for GPT-3.5-turbo and most of the responses for Bard did
not understand the part of the emphasis points, “WITHOUT
ANY DESCRIPTION” of the instruction, provided additional
explanations.

Text-Davinci-003 consistently outputs the five diseases for
all inputs while understanding instructions and patient symp-
toms. However, many predictions were not included in the
correct answers. Some responses from Alpaca-7B failed to
predict the five diseases or contained the same disease multi-
ple times in the responses. Text-Davinci-002 and Alpaca-7B
LoRA output merely repeated the patient’s condition and failed
to diagnose a disease based on the given information.

In summary, GPT-3.5-Turbo was the model with the highest
diagnosis accuracy nevertheless could not provide consistent
answers. The Text-Davinci-003 provided answers in a consis-
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tent format but had slightly lower prediction accuracy. The
remaining models exhibited slightly less adeptness in process-
ing inputs that integrated instructions with patient information,
in contrast to the performance of the two models.

V. CONCLUSION

In this paper, we evaluated the disease diagnosis capabili-
ties and observed the output quality of various LLMs using
the patient basic information dataset PolyMed. The model
with the highest diagnostic ability among LLMs was GPT-
3.5-Turbo, showing an accuracy of 33.99% for the top-1,
54.56% for the top-3, and 61.6% for the top-5. This result
indicates that the general knowledge of LLMs can help to
understand the symptoms and basic information about patients
to some extent and make a diagnosis but seem hard to assist
doctors in actual clinical situations. However, as commercial
LLMs are continuously updated to improve answer quality
and expand capacity, and with new commercial LLMs being
released day by day, we believe that continuous evaluation
is needed. The qualitative evaluation also revealed differences
in the comprehension of user instructions between public and
commercial LLMs, which may be challenging for researchers
to address when utilizing open-source LLMs. Lastly, given
the difference in diagnostic accuracy between commercial and
non-commercial LLMs, we expect that open-source LLMs
with more parameters can be outperformed in real-world
clinical situations by combining existing general knowledge
and task-specific or domain-specific knowledge. We plan to
explore more diverse medical-targeted data and collect more
patient data to study LLM for ADS at a clinical level in the
future.
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