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Abstract—Deep generative models have risen to prominence
in diverse domains, including healthcare. In particular, their
application in causal effect estimation has the potential to
drive significant advancements in personalized medicine. In this
study, we conducted an empirical analysis to investigate the
impact of selection bias on continuous treatment effect estimation
using deep generative models. Our results demonstrate that the
presence of selection bias can lead to estimation performance
disparities of up to 8 to 9 times. Such significant deviations pose
severe risks in medical applications, where accurate treatment
effect estimation is crucial for patient outcomes. Therefore, this
paper underscores the criticality of addressing these challenges
and proposes directions for future research to ensure the robust
application of AI in healthcare.

Index Terms—Artificial Intelligence, Causal Effect Estimation,
Deep Generative Learning

I. INTRODUCTION

In healthcare, precise estimation of treatment effects is
vital. While treatments often have fixed doses or categories,
many scenarios involve continuous treatment where dosages
or interventions vary in a continuous spectrum [1]. This
continuous nature poses a challenge: it increases the complex-
ity of estimating effects due to the vast range of potential
dosages and their respective outcomes [2]. Furthermore, the
need for accurate estimation becomes even more crucial when
considering the wide array of patient responses based on
individual health profiles and conditions.

Deep learning algorithms, especially generative models like
Generative Adversarial Networks (GANs), offer a promising
avenue for addressing the challenges of continuous treatment
effect estimation [3]. The core principle of GANs is a duel
between a generator, which creates synthetic data samples,
and a discriminator, which tries to distinguish between gen-
uine and synthetic samples. As the training progresses, the
generator becomes adept at producing increasingly convincing
fake outcomes. In the context of treatment effect estimation,
these fake outcomes represent potential counterfactual results,
becoming more aligned with what might have been observed
in real-world scenarios. This iterative refinement makes GANs
exceptionally suited for modeling the intricacies of continuous
treatments, offering a dynamic method to bridge the gap
between observed and unobserved potential outcomes.

In this paper, we explore the potential applications of deep
generative model based causal effect estimation in the medical
field. We conduct an empirical study to utilize the latest
causal effect estimation techniques and analyze the results.
In addition, from a medical artificial intelligence perspective,
we present the future direction for causal effect estimation
technology to assist clinicians.

II. DEEP LEARNING-BASED CAUSAL EFFECT ESTIMATION

Efforts to estimate causal effects using deep learning are
diverse, depending on the treatment’s form and assumptions.
At its fundamentals, most research employs a binary treatment
to assess whether an intervention is applied [4]. There are also
studies that consider continuous treatment to estimate outcome
curves based on intervention intensity [5]. When multiple
interventions are possible, research might assume multiple
treatments to identify the optimal treatment [6]. There’s also
a focus on models robust to biases from hidden confounding
variables [7]. Amidst various research directions, this paper
emphasizes the potential of continuous treatment effect estima-
tion techniques, aiming to derive precise drug-response curves
for patients. To this end, we investigate SCIGAN, a state-of-
the-art model for continuous treatment effect estimation that
assumes unconfoundedness [8].

SCIGAN introduces a novel approach to estimate the dose-
response curve using a deep generative model. The generator
of SCIGAN takes factual data as input, producing counterfac-
tual outcomes for arbitrary treatments and dosages. Generated
counterfactual outcomes, along with the real factual outcomes,
are paired as (dosage, outcome) and provided to the Dis-
criminator, which aims to classify the factual outcomes. This
Discriminator contains two hierarchically structured models
trained to classify treatment types and dosages respectively.
Once trained, the generator can produce counterfactual dose-
response functions for given factual data, comprising features,
treatment, dosage, and outcome. Leveraging these generated
counterfactual datapoints, a separate inference network can
then be trained, enabling the inference of potential outcomes
for any set of features. SCIGAN also provides a theoretical
analysis, underscoring the utility of the GAN framework and
the hierarchical discriminator.
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III. EMPIRICAL STUDY

In this empirical study, we utilize SCIGAN to evaluate its
ability to estimate simple treatment effects. While SCIGAN is
originally designed to support multiple treatments, we narrow
our focus to continuous treatment, measuring its performance
exclusively in a single treatment variable context. Adopting a
similar experimental setup to SCIGAN, we extract 16 features
from the MIMIC-III dataset, which includes metrics like SpO2
and tidal volume. The treatment variable was assigned values
between 0 and 1, based on a beta distribution with the mode
representing the optimal dosage (α = 3). We simulate two
diverse dose-response curves: a sine wave and a thresholded
linear function.

Figure 1 presents a comparison of the ground-truth dose-
response functions and SCIGAN’s predictions. Upon close
examination, particularly around the optimal dosage—the crest
for the sine wave and the value of 1 for the thresholded
linear function—it is evident that SCIGAN’s predictions are
remarkably close to the actual values. The predicted dosage
error stands at less than 0.015 relative to the true optimal
dosage across both simulation scenarios. This results in an
outcome error of 1.15 for the sine wave and a mere 0.20 for the
thresholded linear function. However, it is crucial to highlight
that as we move away from the optimal dosage, SCIGAN’s
performance diminishes. The gap between the ground-truth
response and the model’s prediction widens, with the outcome
error dramatically escalating to 10.42 for the sine wave and
1.77 for the thresholded linear function.

We hypothesize that the performance degradation is linked
to the selection bias from the treatment assignment using the
beta distribution. The sparsity of observational data intensifies
as we shift away from the optimal dosage. The very nature
of generative models, where the generator learns indirectly
based on feedback from the discriminator, becomes particu-
larly vulnerable under such data scarcity. In medical contexts,
this translates to tangible risks: treatment guidelines often
inadvertently produce selection biases, causing certain patients
to consistently receive non-optimal dosages. Moreover, such
misjudgments can lead to overtreatment or undertreatment,
presenting serious risks for patient outcomes.

To address the performance degradation due to selection
bias, a novel mechanism is necessary to comprehensively
leverage data from underrepresented dosage intervals. One
plausible approach involves integrating domain knowledge.
For example, E2B method proposed by Bahadori create
arbitrary response function sets using domain insights and
adjust the sample weights of the data [2]. However, these
methods might still introduce biases if domain knowledge is
insufficient. Despite the critical importance of this issue in the
medical field, research targeting the challenges of selection
bias in continuous treatment effect estimation remains sparse.
Before AI-driven treatment effect estimation models can be
reliably implemented in clinical settings, there’s an evident
need for multifaceted research to address these challenges.

Fig. 1. Confusion matrix of labels between Experts 4 and 3 (left), and Experts
5 and 3 (right)

IV. CONCLUSION

We have investigated a state-of-the-art deep generative
model for estimating continuous treatment effects, particu-
larly when confronted with selection bias. As the medical
community increasingly looks towards AI for decision-making
support, it’s imperative to understand and address these chal-
lenges. Our study not only underscores this need but also
paves the way for future research aiming to improve the
robustness and reliability of AI-driven causal effect estimation
in healthcare.
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