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Abstract—This paper proposes a reinforcement learning ap-
proach to improve the performance of the random access
procedure in the massive machine type communication (mMTC)
environment, as defined by 3GPP, to accommodate an increasing
number of user equipment (UEs). The existing random access
process results in channel congestion when UEs that have
failed to transmit due to a fixed backoff indicator choose a
subsequent random access opportunity (RAO) slot. To address
this, we introduce an agent that automatically adjusts the backoff
indicator based on the state of the network environment. As
a result of simulations using Q-learning and DDPG, DDPG
achieves a higher success rate and reward, but the backoff
indicator continually increases. In contrast, Q-learning exhibits
relatively lower performance, yet the stability of the backoff
indicator is maintained. From these findings, it is evident that
the integration of reinforcement learning to optimize the random
access procedure enhances performance. However, it necessitates
careful algorithm selection and precise tuning of the reward
mechanism.

Index Terms—5G, mMTC, Random access, Reinforcement
learning, Q-learning, DDPG

I. INTRODUCTION

The random access procedure is a method utilized when a
UE attempts to connect to a network in a wireless communi-
cation system. It predominantly takes place in scenarios such
as establishing new connections, synchronizing transmission
and reception intervals, and uplink data transmission. Due to
the recent surge in the number of UEs owned by individuals,
3GPP has introduced performance indicators in the mMTC [1]
environment as one of the KPIs for 5GNR. Furthermore, with
advancements in hardware technology, research is also being
actively conducted to enhance the communication environment
by integrating artificial intelligence into communication [2]-
[4]. The random access procedure is among the frequent events
in a wireless communication environment and is crucial for
the UE to either successfully connect to the network or be
allocated resources. A variety of optimization techniques are
applicable here, and the efficiency of these procedures is
paramount, especially in situations where network congestion
is prevalent.

However, using the existing random access procedure [5],
it is challenging to accommodate all UEs. It becomes prob-
lematic to manage a significant number of UEs that suddenly
attempt to access the network with limited resources and types
of preambles. This paper proposes an approach to adjust the
value of the backoff indicator, which governs the wait time
for retransmission during the random access procedure. The
backoff indicator specifies a range for determining the random
wait time during retransmission and is a predefined value.
Through reinforcement learning algorithms, we aim to enhance
the success rate and minimize access wait time by utilizing the
optimal backoff indicator in an environment with a large influx
of UEs.

II. BACKGROUND

A. Preamble transmission (MSG 1)

The UE transmits a random access preamble signal through
a random access channel (RACH). The number of preambles
that can be selected is predefined and transmitted, and these
are randomly selected through the Zadoff-Chu sequence.

B. Random access response (MSG 2, RAR)

The base station (BS) receives a preamble signal and trans-
mits a random access response (RAR) to the corresponding
UE. The message includes information such as that necessary
for time synchronization, initial uplink scheduling information,
and temporary cell ID.

In this process, if the BS does not receive the preamble
signal, or if different UEs select and transmit the same
preamble, a collision occurs. The UE starts a type of timer,
called the RAR window size, from the time it transmits the
preamble to the time it receives the RAR. If the RAR is not
received during the RAR window size, the UE proceeds with
the preamble retransmission, which is immediately transmitted
after waiting for a random time to avoid likely preamble
collisions. Here, the random time is selected within the range
of the backoff indicator.
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C. RRC Connection request (MSG 3)

The UE transmits the connection request message, MSG
3, based on the scheduling information included in the RAR
message. This message includes information such as the ID of
the UE and the service type. In this process, the UE activates
a predefined connection resolution timer and waits until it
receives MSG 4.

D. RRC Connection response (MSG 4)

After receiving MSG 3, the BS transmits a connection setup
message, MSG 4, containing the necessary information for
connection establishment to the UE. If the UE does not receive
MSG 4 within the connection resolution timer duration, it
selects a random time within the backoff indicator range,
similar to the previous retransmission procedure, and performs
the preamble transmission process for MSG 1.

III. REINFORCEMENT LEARNING

Reinforcement learning is a subset of machine learning
and is a technique that learns optimal policies through the
process of receiving rewards when an agent takes an action
in an environment. The agent observes the current state in
the environment and selects an action based on that state.
After applying the selected action, the environment provides
feedback in the form of a change in state and a reward as a
result of the action. The agent continues to refine its action
policy based on this feedback. Figure 1 illustrates the learning
process of reinforcement learning.

Fig. 1. Architecture of Reinforcement learning

1) Q-learning: Q-learning [6] is one of the most well-
known off-policy learning algorithms in reinforcement learn-
ing. In this approach, the agent estimates the optimal action-
value function, often referred to as the Q-function, using
experiences obtained from interactions with the environment.
The learning process of Q-learning is grounded in the Bellman
equation, as depicted in equation (1) below.

Q(s, a) ← Q(s, a)+α[R(s, a)+γmax
a′

(s′, a′)−Q(s, a)] (1)

Use equation (1) to estimate the action value (Q-value)
of the current state. Here, α and γ are used to transform
future rewards into current values, representing the learning

rate and discount factor, respectively. s, a, s′, and a′ represent
the current state, current action, next state, and next action,
respectively, while R(s, a) denotes the reward.

At the onset of learning, the Q-value can be initialized
to any value. As the agent selects and performs an action
in the environment, the state, reward, and subsequent state
are determined. This information is then utilized to update
the Q-value. By repeatedly performing these steps, the Q-
function is optimized. Among the advantages of Q-learning
are its straightforward processes and guaranteed convergence.
Given an appropriate learning rate and ample interactions with
diverse environments, Q-learning converges to the optimal Q-
function. Figure 2 shows the architecture related to the learning
of Q-learning.

Fig. 2. Architecture of Q-learning

2) Deep Deterministic Policy Gradient (DDPG): It is chal-
lenging to employ Q-learning in a continuous action space.
Exploring a continuous space with a greedy policy requires
optimization for all possible actions at each step, making it
very time-consuming when applied to non-parametric function
approximators. DDPG [7] is a variant of the model-free actor-
critic algorithm designed for continuous action spaces. Figure
3 shows the learning process of critic and actor in DDPG. It
integrates the principles of deep learning with reinforcement
learning to function effectively in intricate environments.

The Actor represents a policy function that determines the
optimal action in the current state. The Critic evaluates the
value (Q-value) of the action chosen by the actor. In this
context, both the actor and critic are treated as deep learning
models. The updates for the critic resemble the approach
in Q-learning, as depicted in equation (2), but consider the
continuous action spaces for the action.

Qtarget(s, a) = R(s, a) + γQ(s′, µ(s′)) (2)

where R(s, a) represents the reward obtained from the
current state and action, γ denotes the discount factor, and s′

signifies the subsequent state. µ represents the current policy
as determined by the actor network. Thus, µ(s′) indicates the
action recommended by the actor in the next state s′. The TD-
error, used by the Critic to update both the critic and actor
networks, is computed as follows:
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Fig. 3. Architecture of DDPG

TD − error = Qtarget(s, a)−Q(s, a) (3)

The update of the Actor uses the policy gradient method
as shown in equation (3). Update the actor network in the
direction of maximizing the objective function.

J = E[Q(s, µ(s))] (4)

Here, J represents the expected reward (objective function)
for the action recommended by the actor network in the
current state, denoted by µ(s). We update the actor network to
maximize this objective function. During the learning process,
the actor selects and executes actions based on the current
policy. The Critic calculates the Q-value for this action. The
policy of actor is then updated based on the TD-error from the
Critic. Furthermore, techniques like experience replay and the
target network are incorporated to enhance the stability and
convergence of the learning process.

IV. PROPOSED METHOD

In this paper, we conduct learning in an environment using
Traffic Model 2 proposed in the 3GPP standard document.
Traffic Model 2 represents the distribution of UEs according
to a beta distribution. This model allows us to simulate a rapid
increase in traffic volume. UEs attempting the RA procedure
select a random backoff count using a predefined backoff in-
dicator for retransmission if MSG 2 is not received. However,
since all accessing UEs use the same backoff indicator, there
is a likelihood of collisions occurring again in subsequent
RAO slots. To address this issue, the Agent is trained to
automatically adjust the value of the backoff indicator based
on the state of the network environment. The actions chosen
by the agent are defined as either increasing or decreasing
the backoff indicator. In one simulation, the reward is defined
using metrics such as the success rate, congestion, and average
access delay. The reward is defined as shown in the expression
(5) below:

Reward =(success rate ∗ (1− congestion))
− (average access delay ∗ congestion)

(5)

Equation (5) for the reward promotes learning by increasing
the success rate and decreasing the average access delay.
Since the average access delay is measured in milliseconds
(ms), it is normalized to a value between 0 and 1. High
congestion reduces the success rate, which in turn decreases
the weight proportion used for rewards. In other words, when
congestion and average access delay are high, a negative
reward is received and utilized for learning. In such scenarios,
when the agent receives a negative reward, it interprets that
the channel is congested and increases the value of the backoff
indicator. Conversely, when a positive reward is received, the
agent acts to decrease the backoff indicator and reduce the
average access delay.

V. SIMULATION ENVIRONMENT AND RESULTS

A. Environment and learning parameter

TABLE I
ENVIRONMENT OF RANDOM ACCESS [8]

Parameter Value
Total number of UEs 15,000
α, β 3, 4
Simulation time 10s
PRACH configure index 6
Total number of preambles 54
Number of UL grants per RAR 3
Number of CCEs per PDCCH 4
RA-Response window size 5ms
RRC Connection resolution timer 48ms

Table I defines the environmental parameters used for the
simulation. The parameters are referenced from the 3GPP
standard document [8] and employ traffic model 2 to represent
a rapid UE access environment. The simulation includes a
total of 15,000 UEs, with the number of accessing UEs per
RAO set to follow the beta distribution of traffic model 2. The
parameters α and β for the Beta distribution are specified as
3 and 4, respectively. The number of uplink grants per RAR
is set to three, and the number of control channel elements
(CCE) that can be allocated per physical downlink control
channel (PDCCH) is set at four. The RA-Response window
size and the RRC Connection resolution timer are set to 5 ms
and 48 ms, respectively.

TABLE II
Q-LEARNING REINFORCEMENT LEARNING PARAMETERS

Parameter Value
Learning Rate 0.5
Discount Factor 0.9
Exploration Rate 0.3
Max Exploration Rate 1.00
Min Exploration Rate 0.01
Exploration Decay Rate 0.01

Tables II and III define parameters used in Q-learning and
DDPG learning. The learning rate for Q-learning is set to 0.5,
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determining how much the Q-value is updated in each episode.
The discount factor is set to 0.9, meaning the agent considers
future rewards as 90% of the current reward. The exploration
rate is set to 0.3, allowing the agent to sometimes explore
new actions rather than always choosing the optimal ones.
The maximum exploration rate and minimum exploration
rate, set to 1.00 and 0.01 respectively, define the range of
the exploration activity of agent. The exploration decay rate
influences how quickly the exploration rate decreases as the
agent becomes more familiar with the environment.

For DDPG, the replay buffer size is set to 1000, indicating
the size of the memory buffer that the agent uses to recall
past actions. The discount factor works the same role as in
Q-learning. To update the target network, Deep Deterministic
Policy Gradient performs soft updates on both the critic and
the actor. In this paper, we denote this value as τ and set it to
0.001.

TABLE III
DDPG REINFORCEMENT LEARNING PARAMETERS

Parameter Value
Reply buffer size 1000
Batch size 32
Discount Factor 0.99
τ (Ratio of soft updates on the target
network) 0.001

Learning Rate of Actor 0.005
Learning Rate of Critic 0.005

B. Simulation results

Figure 4 presents the simulation results of the Q-learning
algorithm. Subfigure (a) in Figure 4 illustrates the evolution
of the backoff indicator selected by the Q-learning algorithm
based on rewards as the learning progresses. Subfigure (b)
in Figure 4 compares the success rate, congestion rate, and
average access delay over the course of the learning process of
the Q-learning algorithm. The rewards fluctuate between 0.066
and 0.132 throughout the episodes. The backoff indicator
demonstrates a steady trend, climaxing at 45 ms by the end of
the simulation. The success rate enhances performance by as
much as 32%. Regarding congestion, it decreases from approx-
imately 48.8% to 43%, highlighting the growing capability of
the agent to manage network traffic efficiently. In terms of
the average access delay, significant fluctuations are observed.
The 30th episode recorded the peak delay at 76.54 ms, while
in subsequent episodes, the delay generally hovered around an
average of 60 ms.

Figure 5 presents the learning results of the DDPG algo-
rithm. Similar to Figure 4, subfigure (a) in Figure 5 illustrates
the changes in the success rate and the backoff indicator, while
subfigure (b) depicts the variations in success rate, congestion,
and average access delay. The reward experiences a notable
peak of 0.740 in the 120th episode, starting from 0.062. At the
same time, the success rate demonstrates a performance close
to 100%, highlighting the efficiency of the DDPG algorithm
in optimizing system performance. In terms of congestion,
there is a significant decrease, declining to around 22% by the

(a) Reward with backoff indicator

(b) Success rate with Congestion
Fig. 4. Result of applying Q-learning algorithm

(a) Reward with backoff indicator

(b) Success rate with Congestion
Fig. 5. Result of applying DDPG algorithm
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110th episode. Although backoff indicators play a crucial role
in access delay, they consistently rise as learning continues.
Starting at an initial 15 ms, it is observed that by the 280th
episode, it escalates to 1050 ms. As a result, the average access
delay, which began at 35.05 ms, also surges to approximately
1178.4 ms by the 280th episode. This sharp increase adversely
impacts the delay, especially concerning the performance of
the User Equipment.

Overall, Q-learning appears to yield a relatively unstable
return value as the episodes progress. Notably, backoff indi-
cators tend to rise over time, which could pose challenges for
network access delay. Moreover, the average access delay also
witnesses a substantial increase during certain episodes. The
performance of DDPG seems to surpass that of Q-learning.
Although the early episodes present comparable outcomes,
the reward value displays noticeable improvements as more
episodes unfold. However, the value of the backoff indicator
has grown more markedly over time. This observation suggests
that reducing access delay in the DDPG algorithm may not be
a primary concern when determining rewards.

VI. CONCLUSION

In this paper, we propose an approach to adjust the backoff
indicator to address the issues caused by rapid UE access in the
mMTC environment. In the existing random access procedure,
all UEs cannot evade the congested channel environment when
using a fixed backoff indicator, which impacts UEs attempting
the random access procedure in the subsequent RAO slot.
To address this, we suggest a strategy that enables agents to
automatically adjust the value of the backoff indicator based
on the network state.

Simulation results from two reinforcement learning algo-
rithms, Q-learning and DDPG, indicate that DDPG performs
well in terms of rewards and success rate. However, there are
concerns with the continuous increase of backoff indicators.
In contrast, Q-learning maintains a stable backoff indicator,
but its performance lags significantly behind DDPG. Thus,
utilizing reinforcement learning to optimize the random access
procedure is beneficial, but choosing the right algorithm and
fine-tuning the reward mechanisms are crucial.

For future research stemming from this paper, we aim to
investigate reinforcement learning algorithms to refine the
reward mechanism and enhance the performance of random
access procedures in even larger environments.
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