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Abstract—Understanding human behaviors leads to fully-
automated systems in the near future. This paper investigates
a deep learning solution that forecasts human activity patterns
based on sensing signals measured by internet-of-things devices.
Practical limitations on these small-form-factor sensors request
remote deep learning services at a distant edge computing
server. Therefore, we need to involve impairments in sensor-
server communication phases, such as random packet loss,
resource constraint, and propagation noise, in the design of the
remote learning architecture. To address these challenges, we
propose a collaborative learning strategy among the sensors and
server. Each sensor is equipped with its own encoding neural
network that compresses high-dimensional sensing signals to
communication messages. These are forwarded to the server
through imperfect backhaul channels. Then, a classifier at the
server infers desired labels. A joint training mechanism of the
encoders and classifier is developed along with the channel
impairment. By doing so, we can obtain a robust prediction
model for arbitrary communication noises. Numerical results
demonstrate the viability of the proposed methods.

Index Terms—Lifelog dataset, multi-modal features, human
behavior prediction.

I. INTRODUCTION

As human everyday life is prevalent with a variety of
activities and behaviors, recording and analyzing this infor-
mation becomes important. It is necessary to understand the
various characteristics of human behavior and physiological
signs. The lifelog datasets [1], [2] provide deep insights into
such metacognitive tasks. These datasets collect a wide range
of modalities measured by sensors embedded in wearable
devices, such as images, videos, vital signs, and location data,
that provide an unprecedented opportunity to investigate the
intricacies of daily experiences. As a result, they have played
a crucial role in advancing the research across multiple disci-
plines to investigate a variety of challenges. Existing studies
have explored activity recognition, predicting emotional states
from facial expressions, and understanding patterns in daily
routines. Such metacognitive tasks of heterogeneous human
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behaviors invoke the use of deep learning techniques to predict
target labels accurately.

Practical constraints on small-form-factor sensors and cou-
pled nature of multimodality features block the execution of
deep neural network models at wearable devices straight-
forwardly. This requests the uplink communications from
multiple sensors to a server holding deep prediction models.
However, most of conventional works have not directly ac-
counted for the unique challenges induced by the commu-
nication issues, including wireless resource constraints and
channel impairments. In addition, the design of sensor-server
coordination protocols is essential to facilitate decentralized
sensor encoding processes and collaborative inference at the
server.

These challenges would be addressed by the vertical feder-
ated learning (VFL) framework [3]–[5] where multiple client
having different features of the identical dataset supports the
remote inference at a server. The successes of existing VFL
approaches have been confined to a single modal case in image
classification applications. In addition, resource constraints in
a client-server communication step were not involved in con-
ventional studies. Such a special property requests a practical
design of multiple access schemes for the VFL framework.

This paper proposes a decentralized cooperative learning
strategy for the lifelog dataset where a server aims at esti-
mating human behaviors by receiving signals measured by
individual sensors. Multimodal signals at individual sensors
exhibit heterogeneous properties with variable dimensions for
each sampling duration. To overcome this difficulty, encoding
neural networks of sensors are carefully designed such that
they can address heterogeneous inputs with arbitrary lengths.
The resulting encoded signals are then forwarded to the
server through uplink backhaul channels. Imperfections in
this uplink coordination step involve random packet loss in
which some of the sensing signals would be dropped due to
a severe propagation environment. To tackle this problem, we
present an embedding dropout (ED) operation which includes
arbitrary losses of encoded signals into the training step. This
guarantees the robustness of trained neural networks at the
sensors and the server to practical channel imperfections.

In addition, mutual interference among the sensors would
result in severe degradation of the inference performance at the
server. Inspired by resource sharing schemes, we provide or-
thogonal multiple access (OMA) and non-orthogonal multiple
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TABLE I
Lifelog dataset [1]

(a) Features
Feature Description Dimension Max. length
e4Acc Accelerometer samples measured by wristband 3 1,920
e4Bvp Blood volume pressure samples measured by wristband 1 3,840
e4Eda Electrodermal activity samples measured by wristband 1 240
e4Hr Heart rate samples measured by wristband 1 60

e4Temp Skin temperature samples measured by wristband 1 240
mAcc Accelerometer samples measured by smartphone 3 1,800
mGps GPS samples measured by smartphone 3 25
mGyr Gyroscope samples measured by smartphone 6 1,800
mMag Magnetometer samples measured by smartphone 3 1,800

(b) Labels
Label Num. samples

IN VEHICLE 12,603
ON BICYCLE 365

ON FOOT 15,615
STILL 207,833

UNKNOWN 36,470
WALKING 135

access (NOMA) protocols. Although the NOMA approach has
recently been studied [3], they cannot accommodate arbitrary
given resource constraints since the output dimension of the
encoder neural networks should be identical to that of the
label, thereby posing a rigid architecture. We tackle this
difficulty by allowing the encoders to yield output signals with
arbitrary dimensions. Impacts of these channel impairments
are included in the inference design from the sensors to the
server. We propose a joint training algorithm that optimizes
an end-to-end prediction model of the lifelog dataset over
arbitrary channel imperfections. Numerical results validate the
superiority of the proposed learning strategy.

II. LIFELOG DATASET

A. Description

The lifelog dataset [1] aims at investigating human behav-
iors and their underlying semantic contexts such as emotion,
location, and physical/social activities. Features and labels of
the considered dataset are summarized in Table I. A variety
of multi-modal sensory data samples are obtained by using
portable and wearable devices including smartphones and
smart wristbands. As shown in Table I(a), the lifelog dataset
consists of 9 features of 72 participants collected over at least
12 hours per day. In this study, we consider 22 participants.
Each participant was involved in the data collection experiment
within 12-30 days. Therefore, the considered dataset can be
viewed as time series data samples whose sequence lengths are
different for participants. Each data sample is partitioned into
60-second-long segments. Due to the heterogeneous sampling
frequency of sensors, the sequence length is different for
participants and features. The maximum sequence length of
each feature is shown in Table I(a). It is observed that
the lifelog dataset requires for processing high-dimensional
feature vectors having up to 6×1, 800 = 10, 800 elements for
the mGyr feature.

Based on these time series features, it is desired to predict
user activity labels. Activities of each participant are labeled
among 6 different categories as presented in Table I(b). This
can be formalized as a classification problem that categorizes
an input sample having 9 features into 6 classes. For accurate
human behavior prediction, we leverage a deep neural network
(DNN) model trained over the lifelog dataset. The number of
the samples for each class is provided in Table I(b), resulting

in total 140,114 samples. This is split into the train, validation,
and test datasets each consisting of 60 %, 20 %, and 20 %
samples of the entire dataset.

B. Challenges

Practical wearable devices have no sufficient power to
implement real-time computations of very deep architectures.
Therefore, it is necessary to adopt the notion of the mobile
edge computing network where wearable devices send their
sensing signals to a cloud computing server equipped with
a classifier DNN. By doing so, we can facilitate remote AI
services by offloading AI computations of battery-powered
wearable devices to the server having intensive computing
units. However, sharing raw sensory samples over wire-
less/wired media with limited bandwidth invokes excessive
communication latency to convey high-dimensional features.
To reduce communication overheads, each sensor needs to
encode collected samples into low-dimensional representation.
This requests a novel DNN architecture that suits device-server
networks.

Since the devices and sensors have heterogeneous sampling
rates, these time series features are of variable lengths. Fea-
tures of different participants are measured over a different
time duration, thereby leading to variable-length data sam-
ples even for the same modality. Handling such user- and
modal-wide heterogeneity is one of the major challenges in
addressing the lifelog dataset. To address this issue, we need
to develop a proper encoding strategy at wearable devices that
can handle variable-length sensory signals.

In practice, users might leverage lightweight wearable de-
vices without expensive sensors. Furthermore, several features
would be dropped in the communication channel from the
devices to the server. This poses random imputations in data
samples where some parts or the entire set of each feature
is not available both at the devices and the server. Therefore,
it is essential to build a valid DNN model robust to random
defects in input features.

III. PROPOSED COOPERATIVE INFERENCE

For the remote prediction of human behaviors, as illustrated
in Fig. 1, we consider a client-server learning architecture
where each client corresponds to each embedded sensor, e.g.,
accelerometer, gyroscope, and heart rate sensors. There are
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Fig. 1. Proposed cooperative inference system

N = 9 different sensors collecting multi-modal features in
Table I(a). These sensing signals are then forwarded to the
server through uplink backhaul channels for the estimation of
labels shown in Table I(b). Total M wireless resource blocks
(RBs) are assigned to the uplink coordination where each RB
is assumed to convey one real-valued number reliably.

A. Inference Structure

We propose a cooperative inference structure among sensors
and server. At a certain sampling time t (t = 1, · · · , T ), an
input feature of sensor i (i = 1, · · · , N ) is represented by a
matrix X

(t)
i ∈ Rs

(t)
i ×di with time-varying sequence length

s
(t)
i and feature dimension di. To accommodate resource-

constrained backhaul channels, each sensor i encodes the
sensing data matrix X

(t)
i using the dedicated encoder neural

network fθi(·), where θi indicates a set of trainable parame-
ters. The resulting output, denoted by e

(t)
i ∈ RE of length E,

becomes a low-dimensional embedding vector of raw sensing
data X

(t)
i . As will be discussed, the embedding dimension E

is set according to the number of the RBs M . The encoding
step at sensor i is expressed as

e
(t)
i = fθi(X

(t)
i ). (1)

The sensors transmit a set of embedding vectors e(t) ≜
{e(t)i : ∀i} to the server. The time-varying channel transfer
function of the backhaul links is denoted by h(t)(·), which
captures the impacts of channel impairments and multiple
accessing protocols adopted at the sensors. Then, the received
signal vector at the server, denoted by z(t), can be written as

z(t) = h(t)(e(t)). (2)

Based on a classifier gφ(·) with learnable parameter φ, the
server obtains an estimate ŷ(t) for the ground truth label y(t)

of the sensing data matrices {X(t)
i : ∀i} as

ŷ(t) = gφ(z
(t)) = gφ

(
h(t)

(
{fθi(X

(t)
i ) : ∀i}

))
. (3)

As a result, the joint training task of a group of encoders
{fθi(·) : ∀i} and the classifier gφ(·) is formulated as

min
Θ

E
[
l(y(t), ŷ(t))

]
, (4)

where Θ ≜ {θi : ∀i}
⋃
φ stands for the set of all training

parameters, l(y(t), ŷ(t)) indicates a loss function between the

label y(t) and its estimate ŷ(t), and the expectation operator
E[·] is taken over the training dataset X = {X(t)

i : ∀i, t} as
well as random backhaul channel h(t)(·). The training problem
(4) can be readily addressed by the stochastic gradient descent
(SGD) method and its variants, e.g., the Adam algorithm.

B. Channel Model

In practice, the backhaul coordination step invokes random
imputation in the received signal z(t). More precisely, data
packets conveying a particular embedding signal e(t)i would be
dropped due to the deep fading case with a severe propagation
environment. Such a scenario prevails in the considered human
behavior prediction task where some sensors or wearable
devices are not available for particular users. We introduce
a binary number b

(t)
i ∈ {0, 1} to indicate the loss of sensor i

at time t. If sensor i is deactivated or its encoded signal e(t)i is
dropped in the backhaul communications, its status is denoted
by b

(t)
i = 0. Otherwise, i.e., when e

(t)
i is reliably transmitted

to the server, we set b(t)i = 1. The channel transfer function
h(t)(·) at time t is then determined by a set of binary indicators
{b(t)i : ∀i} as well as multiple access schemes of encoded
signals e

(t)
i , ∀i, which will be described in the following.

C. Multiple Access Schemes

According to the RB sharing policy, we consider two mul-
tiple access schemes: orthogonal multiple access (OMA) and
non-orthogonal multiple access (NOMA). Detailed processes
of each scheme are given in the following.

1) Orthogonal Multiple Access: In the OMA protocol, each
sensor utilizes exclusive RBs to transmit its embedding signal.
To this end, total M = NE RBs are evenly assigned to
each sensor. As a consequence, each sensor i can send its
embedding signal e

(t)
i ∈ RE to the server without incurring

any interference. The received signal vector z
(t)
OMA in (2) for

the OMA case can be written as

z
(t)
OMA =

N⊕
i=1

(b
(t)
i e

(t)
i ), (5)

where
⊕N

i=1 ai indicates the concatenation operation of vec-
tors a1, · · · ,aN . In (5), the scalar multiplication b

(t)
i e

(t)
i stands

for the ED layer which drops the embedding signal e
(t)
i

according to the Bernoulli random number (7). The dimension
M of the received signal vector z(t)OMA becomes M = NE.

2) Non-Orthogonal Multiple Access: The NOMA scheme
allows all sensors to share the entire RBs. Thus, the dimension
of the embedding signal e(t)i is directly set to the number of the
total RBs, i.e., E = M . The received signal z(t)NOMA ∈ RE

of the NOMA scheme is given as the superposition of all
embedding signals as

z
(t)
NOMA =

N∑
i=1

b
(t)
i e

(t)
i . (6)

Compared to the OMA case (5) which needs M = NE
RBs, in the NOMA, the total number of the RBs M = E
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Fig. 2. Encoder architecture.

is no longer proportional to the number of the sensors. Con-
sequently, we can save the backhaul coordination resources
and improve resource utilization efficiency. However, at the
same time, the multi-sensor interference in (6) might reduce
the final classification accuracy. Such a tradeoff relationship
will be discussed in the simulation result section.

IV. PROPOSED LEARNING STRATEGY

This section provides a structure of the encoder fθi(·) that
can handle variable-length samples X

(t)
i . It is then followed

by the joint training policy of the encoders and classifier.

A. Model Design

Fig. 2 illustrates the encoder architecture which consists of
two convolutional layers and one fully-connected layer. The
convolutional layers perform one-dimensional (1D) convolu-
tional operations for the time series input X(t)

i ∈ Rs
(t)
i ×di in

the time domain of sequence length s
(t)
i . The l-th convolutional

layer of encoder fθi(·) adopts C[l] filters with stride 1, and
it is followed by the max-pooling layer of filter size (2, 1).
No padding is employed. For the first convolutional layer,
we leverage C[1] = 16 filters of shape (5, di). After the
max-pooling, the output shape of the first convolutional layer
becomes (16, S(t)

i,1 , 1), where the first axis indicates the channel
of the convolutional layer, S(t)

i,1 ≜ ⌈s(t)i −4⌉/2 is the sequence
length of the output of the first convolutional layer, and ⌈·⌉
stands for the ceiling operator.

The second convolutional layer employs C[2] = 32 fil-
ters of shape (5, 1). Combining with the max-pooling layer,
the corresponding output shape becomes (32, S

(t)
i,2 , 1) with

S
(t)
i,2 ≜ ⌈S(t)

i,1 − 4⌉/2 being the sequence length of the output
of the second convolutional layer. Notice that the output
shape depends on sample-wise sequence length s

(t)
i . To handle

such variable-length data, we apply the global sum-pooling
(GSP) to the second axis which reduces a sequence for each
convolutional channel to a scalar signal. Thus, the output
shape of the global sum-pooling becomes (32, 1, 1). We then
employ a fully-connected layer to get the encoded signal s(t)i

of length E.

Next, the classifier gφ(·) at the server consists of three fully-
connected layers whose output dimensions are set to 128, 100,
and 6, respectively. We employ the rectified linear unit (ReLU)
and softmax functions as activation functions at hidden and
output layers, respectively.

B. Proposed Training Strategy

We propose a joint training strategy that optimizes encoders
fθi(·), ∀i, and classifier gφ(·), simultaneously. The impact of
the stochastic data imputation b

(t)
i in the backhaul coordination

(5) and (6) should be injected into the training process for the
robust optimization of the classifier gφ(·) at the server. To this
end, we propose an embedding dropout (ED) technique that
randomly drops the embedding vector, i.e., the encoded signal
s
(t)
i , during the training. We generate the Bernoulli random

variable b
(t)
i as

b
(t)
i =

{
0, with probability p

1, with probability 1− p
(7)

where p ∈ [0, 1] is a hyperparameter contriving the probability
of sensor i being dropped. Based on b

(t)
i , each embedding

signal e(t)i is removed in the forward propagation (3) as well
as in the gradient calculation. Thus, the ED technique (7) is re-
garded as a stochastic and non-trainable layer injected between
the sensors and sever. Unlike the vanilla dropout layer which
deactivates each element of latent vectors independently, the
proposed ED layer performs group-wise dropout operations
where the entire embedding vector e

(t)
i becomes active or

inactive. By doing so, a number of artificial information loss
scenarios can be easily injected both in the training and test
steps. This brings the generalization ability for the classifier.

Let X(t) ≜ {X(t)
i : ∀i} be the set of all sensing signals

sampled at time t. Then, the training dataset is defined as
X = {(X(t), y(t)) : ∀t}. The mini-batch stochastic gradient
descent (SGD) algorithm is adopted where a mini-batch set B
is uniformly sampled from the training set X , i.e., B contains
a number of tuples (X(τ), y(τ)) of arbitrary time instants τ ∈
{1, · · · , T}. Thus, the mini-batch set B can be simply denoted
by the subset of all time instants B ∈ {1, · · · , T}. The mini-
batch average loss function is then given as

L(Θ) =
1

|B|
∑
τ∈B

l(y(τ), ŷ(τ)), (8)

where |B| is the cardinality of B. We can readily employ the
standard SGD algorithm to minimize (8). The update rule of
each training epoch is written by

Θ ←− Θ− η∇ΘL(Θ) (9)

with ∇ΘL(Θ) being the gradient of the loss function L(Θ)
with respect to Θ.

Algorithm 1 summarizes the proposed training strategy
which optimizes the encoder parameters θ1, · · · , θN and the
classifier parameter φ iteratively. For each mini-batch sample
τ ∈ B, each sensor i encodes its sensing signal X

(τ)
i into

e
(τ)
i individually using their encoder fθi(·). We then employ

the ED layer for each e
(τ)
i to mimic the stochastic loss of the
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TABLE II
Test accuracy performance.

M = 9 M = 27 M = 45
ptest = 0 ptest = 0.2 ptest = 0 ptest = 0.2 ptest = 0 ptest = 0.2

NOMA w/ ED 78.330 77.750 79.051 78.374 79.144 78.552
OMA w/ ED 77.344 76.637 77.808 77.214 78.394 77.817

NOMA w/o ED 78.620 76.117 79.034 75.542 79.399 76.484
OMA w/o ED 77.417 75.391 78.005 57.275 78.669 62.125

Algorithm 1 Proposed Training Strategy
Initialize the parameters θ1, · · · θN , and φ.
for each training epoch do

Sample the mini-batch set B ⊂ X .
for each mini-batch sample τ ∈ B in parallel do

for each sensor i = 1, 2, · · · , N in parallel do
Calculate e

(τ)
i from (1).

Employ the ED layer (7) to e
(τ)
i .

end for
Obtain z(τ) from (2).
Predict ŷ(τ) from (3).

end for
Calculate the loss function L(Θ) from (8).
Update the parameter Θ from (9).

end for

sensor. This randomly drops some of the encoded signals in
the training. The signal received by the server z(τ) is created
based on the OMA (5) or NOMA (6) strategies. Then, we can
calculate the estimate ŷ(τ) and the loss function L(Θ) in (8).
This is followed by the SGD update (9) where the gradient
∇ΘL(Θ) can be computed using the standard backpropagation
algorithm. After the training, optimized encoders and classi-
fiers are exploited for the decentralized prediction of sensing
data samples.

V. NUMERICAL RESULTS

This section assesses the proposed cooperative learning
policy for the lifelog dataset problem. Among the total of
273,921 samples, 164,352 and 54,784 samples are used for the
training and validation, respectively, and the remaining 54,785
samples are exploited for the final test. The drop probability p
of the ED layer (7) in the training and test phases are denoted
by ptrain and ptest, respectively. Unless otherwise stated, we
set ptrain = 0.2. We employ the Adam algorithm to optimize
encoders and a classifier, with a learning rate η = 8 × 10−6

and batch size 4, 096. In the simulations, the number of the
RBs M is set to M ∈ [9, 27, 45].

Table II compares the test accuracy of various schemes with
the different numbers of the RBs M and the test packet loss
probability ptest. Notice that the methods without the ED
technique correspond to the case with ptrain = 0, whereas
those with the ED are trained with the drop probability
ptrain = 0.2. The best results for each M and ptest are
highlighted by boldface letters. Regardless of M and ptest,
the NOMA protocol along with the ED technique generally
performs better than the OMA counterpart. This validates the

Fig. 3. Accuracy performance with respect to test ED probability ptest for
M = 27 and ptrain = 0.2.

effectiveness of the resource sharing policy for the proposed
cooperative learning method. With random packet loss, i.e.,
ptest = 0.2, the test accuracy slightly decreases compared
to the ideal case with ptets = 0. Increasing M leads to
the improvement of the prediction performance. These results
confirm the fact that the trained neural encoders can exploit
the communication resources actively to enhance the inference
performance at the server.

Fig 3 illustrates the classification accuracy by changing the
ED probability ptest for M = 27. Both the NOMA and OMA
schemes with the ED technique are trained at a fixed drop
probability ptrain = 0.2. but are applied to a wide range of the
test probability ptest ∈ {0, 0.1, · · · , 0.5} unseen in the training
phase. It is shown that both methods exhibit a good accuracy
performance at any given ptest, proving the generalization
ability to arbitrary packet loss probabilities. The NOMA with
the ED method performs better than the OMA with the ED
method. Without the ED technique, the performance of the
NOMA and OMA approaches highly degrade as ptest gets
larger. In particular, the OMA without the ED fails to carry out
a valid classification procedure. This validates the effectiveness
of the proposed ED technique to get robust encoder and
classifier models.

So far, we evaluate the test accuracy for stochastic packet
losses with given probability ptest. In Fig. 4, we consider
deterministic packet loss events where a certain sensor out
of a total of nine sensors is dropped. The x-axis stands for
the missing sensor. The NOMA with the ED method exhibits
almost constant classification accuracy for all simulated cases.
On the contrary, the performance of the OMA without the ED
method highly fluctuates for the elimination of each sensor,
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Fig. 4. Accuracy performance with deterministic packet loss for M = 27
and ptrain = 0.2.

in particular, e4HR and mGyr features. Therefore, we can
conclude that the NOMA protocol along with the ED layer is
essential to learn effective sensor-server cooperation policies
for arbitrary packet loss scenarios.

VI. CONCLUSIONS

In this paper, we have proposed cooperative learning strate-
gies for the lifelog dataset in which multiple sensors and
a server collaboratively estimate human activities based on
multi-modal sensing signals. To this end, each sensor exploits
neural encoder that encapsulates real-time measurements to
low-dimensional messages conveyed to the server. Variable-
length sensing signals can be handled by the proposed encoder
structure having convolutional layers followed by the GSP
operation. In addition, by leveraging the ED technique, our
proposed system becomes robust to random drops of sen-
sors and encoded signals in the sensor-server communication
step. Furthermore, we have developed orthogonal and non-
orthogonal types of resource sharing strategies for efficient
backhaul coordination. Simulation results have confirmed that
the proposed method with the ED technique can improve
the robustness to the random or particular losses of sensing
signals.
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