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Abstract—Beam hopping method has become a promising and
significant technology in the next generation of high through-
put satellite (HTS) systems. Using deep reinforcement learning
(DRL), this research suggests a unique method for improving
precoded cluster hopping in multi-beam geostationary orbit
(GEO) satellite communication systems. Choosing the optimum
beam clusters for transmission based on the current channel
circumstances, our goal is to increase the effectiveness and
capacity of satellite communication systems. Our simulation
results based on DRL yields better performance when compared
to other techniques.

Index Terms—geostationary orbit, deep reinforcement learn-
ing, satellite networks, beam hopping, precoding.

I. INTRODUCTION

Multi-beam geostationary orbit (GEO) satellite communica-
tion systems play a critical role in providing global coverage
and high-capacity data transmission for various applications.
To meet the increasing demand for data services, optimizing
the capacity allocation and resource management in these
systems is crucial. One approach that has gained significant
attention is the concept of beam hopping, which allows
flexible resource allocation. Beam hopping, in combination
with precoding techniques, enhances system performance by
adapting to varying traffic patterns and user demands [1].
It offers the potential to improve system capacity, optimize
spectral efficiency, and ensure efficient utilization of satellite
resources.

Advantages of cluster hopping (CH) have been the subject
of several studies. In order to enhance system performance and
capacity allocation, authors presented a cluster hopping strat-
egy mixed with precoding techniques [1]. Comparing them to
more established techniques, they showed improved capacity
and higher user demand satisfaction. So as to hasten the
optimization process. On the other hand, deep reinforcement
learning (DRL), which combines the strengths of deep learning
and reinforcement learning, has become a popular strategy
in machine learning. The contributions of this work are as
follows:

• The DRL method is adapted to maximize the minimum
ratio between the offered capacity and the requested
demand among the cluster.

• We also compare our proposed method with respect to
the heuristic approach and linear programming method.

II. SYSTEM MODEL

In our study, we analyze a multi-beam satellite system with
a total of Nb beams. At any given time instance, only a
subset of F beams can be concurrently activated. We define
the illumination ratio as F

Nb
. An illumination ratio of 1/4,

for example, means that 25% of the total number of beams
are lighted. It is assumed that all beams operate in the
same spectrum and utilize full-frequency reuse. The hopping
window is divided into several time slots, and we try to
match the illumination pattern average capacity to the specified
demand. In a specific snapshot and cluster, the received signal
vector for the k active beams in cluster i is represented as yik
which is expressed as
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where hi
k = [hi

1, · · · , hi
K ]T ∈ CK×1 denotes is the channel

vector for k-th beam in i-th cluster. vi
k ∈ CK×1 being the

precoding vector for k-th beam in i-th cluster. zk represents the
additive Gaussian zero-mean unit-variance noise. To reduce
interference, we use minimal mean square error (MMSE)
precoding [2]. The received signal-to-interference-plus-noise
ratio (SINR) for the k-th beam in the i-th cluster can be
expressed as
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Therefore, the achievable capacity to cluster i is expressed as

Ci = WfDVB(γ
i
k), (3)

where the fDVB is the mapping function based on the digital
video broadcasting [3]. Specifically, we aim to achieve ap-
proximate equality between the requested demand and offered
capacity of each beam and cluster, ∀i ∈ {1, · · ·Nb} and ∀k ∈
{1, · · ·Nc}, respectively. The illumination design optimization
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is conducted at the hopping window level. Thus, we adjust
the cluster demand to D̂i = ThDi [bits/hopping window] in
which Th indicates the hopping window consisting of Ns time-
slots. Also, we adjust the time slot-based cluster capacity to
Ĉi = TsCi [bits/time-slot] in which Ts denotes the time slot.
Therefore, the effective capacity at the hopping window level
can be given by R̂i =

∑Ns

t=1 ut[i]Ĉi [bits/hopping window],
where ut[i] is a binary number for the i-th cluster.

The objective is to maximize the minimum ratio between
the offered capacity and the requested demand among the
cluster/beams and can be expressed as follows:

P1 : max
u1,··· ,uNs

min
R̂i

D̂i

s.t.

Nc∑
i=1

ut[i] ≤ F ′, (4a)

uT
t Aut = 0, t = 1, . . . , Ns, (4b)

ut[i] ∈ {0, 1}, ∀i, t = 1, · · ·Ns, (4c)
Nc∑
i=1

ut[i]Pi ≤ PT , (4d)

Pi ≤ Pmax. (4e)

The vector u1, · · · ,uNs
represents the optimization variables,

where ut is a binary vector of size Nc × 1. The positions of
1’s in ut indicate the indices of the illuminated clusters.

The constraint (4a) guarantees that the overall number of
active beams at a particular time slot t equals F ′, which is the
preset number of active clusters. This equation limits the total
number of active beams not to exceed the number of active
clusters accessible during a specific time period. (4b) enforces
that active clusters are not adjacent to each other using the
matrix A ∈ {0, 1}Nc×Nc , which is a square symmetric matrix,
i.e., Ai,j = Aj,i. If Ai,j = 1, it indicates that cluster i is
adjacent to cluster j. This constraint ensures that adjacent
clusters cannot be simultaneously active, promoting better
interference management and resource allocation. (4c) states
that the elements of the vector ut should be binary, meaning
they can only take on the values of 0 or 1. (4d) and (4e) reflects
the relationship between the power levels Pi and ut[i] ensuring
that the selected beam powers do not exceed the allocated total
power budget PT and that individual beam powers stay within
the limit Pmax. The above optimization problem P1 is solved
by turning it into a maximization problem with the help of an
additional slack variable ϕ and expressed as

P2 : max
u1,··· ,uNs ,ϕ

ϕ

s.t.
R̂i

D̂i
≥ ϕ, (5a)

(4a), (4b), (4c), (4d), (4e).

III. HEURISTIC AND DRL BASED SOLUTION

A. Heuristic solution
For heuristic method, we select the cluster with the highest

demand-to-capacity ratio and activate it if it satisfies the

Algorithm 1: CH algorithm using DRL

1 Initialize the environment with parameters such as
demand and system constraints.

2 Initialize the random weights θ and target network θ−.
3 Create a DQN Agent with a Q-network, optimizer, and

loss function.
4 Train the agent by selecting actions based on the

current state.
5 Store the experience tuples (s, a, r, s′).
6 Update the Q-network parameters using the agent’s

memory and experiences.
7 Record episode rewards, episode numbers, epsilon.
8 Sample the mini-batch of (s, a, r, s′) from D.
9 Train the Adam optimizer.

10 Evaluate the performance of the offered capacity.
11 End.

constraints. Then update it by recalculating the demand-to-
capacity ratio for the remaining clusters and repeat the selec-
tion process until the desired number of clusters is activated
or the constraints are met.

B. DRL based solution

In this section, we present an overview of the fundamental
concepts in DRL, including state, action value, and reward.
Here state represents sit = {D̂i, Ĉi, R̂i, F ′}, action refers to
the decision based on the binary variable expressed as at =
{ut[1], ut[2], · · · , ut[i] | ut[i] ∈ {0, 1}, ∀i}, and reward is the
feedback indicating the minimum ratio between the offered
capacity and the requested demand. We propose an algorithm
based on DRL for optimizing the illumination pattern in a
multibeam GEO satellite networks. CH algorithm using the
DRL process is illustrated in Algorithm 1.

The algorithm consists of several steps, including state ini-
tialization, action selection, state transition, reward calculation,
and model training using a memory buffer and an Adam
optimizer. We use a deep neural network (DNN) in this context
to estimate the ideal action-value function as

Q∗(sit, at) = max
π

E
[
rt + γrt+1

∣∣ sit = s, at = a, π
]
, (6)

where γ is discount factor. The training process involves
updating the Q-network using experiences from the environ-
ment, utilizing techniques like experience replay to improve
learning stability. Experience replay is employed, where past
experiences are stored in a replay memory buffer and randomly
sampled for training, enhancing learning efficiency and sta-
bility. During each training step, a batch of experience items,
here we call it a mini-batch, are randomly sampled from replay
memory and the target value is calculated through the target
network Q based on the Bellman equation [4]. The target value
is calculated as

yt = rt+1 + γmax
a∈A

Q(sit+1, at+1; θ
−). (7)
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TABLE I
SIMULATION PARAMETERS

Parameters Value
Satellite longitude 13°E (GEO)

Satellite total power, PT 6000 W
Beam radiation pattern Provided by ESA

Downlink carrier frequency 19.5 GHz
Roll-off factor 20%

Hopping Window 256
Duration of a time-slot 1.3 ms

User link bandwidth, BW 500 MHz
Learning Rate 0.0001

Training Epochs 2000
Replay Start Size 1000
Discount Factor 0.9

Initial Exploration Rate 0.5
Final Exploration Rate 0.01

Activation Function Relu

Fig. 1. Reward versus the number of episodes.

Based on the target value in P2, the loss L(θ) of the current
network is calculated as

L(θt) = E(s,a,r,s′)

[(
yt −Q

(
sit, at; θt

))2]
. (8)

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the proposed CH snap-shot
selection and illumination period optimization results. The
simulation parameters are listed in Table 1. A total of 2000
training epochs are used. The structure of the Q-Network has
three fully connected layers.

Fig.1. shows how the rewards obtained by the agent change
as the number of episodes increases. This figure helps us
understand the learning progress and convergence of the
algorithm, allowing us to analyze the effectiveness of the
applied DRL technique. In Fig. 2, the performance of the
proposed DRL scheme is compared with various schemes.
The simulation results reveal that linear programming (LP)
and greedy algorithms averagely satisfy the cluster demand by
87% and 89%, respectively. The performance of the proposed
DRL framework for demand satisfaction is by 93.6% on aver-
age, demonstrating its superiority in terms of cluster demand
matching compared to that of benchmark schemes. Therefore,
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Fig. 2. Demand vs. offered capacity at the cluster level.

it is concluded that DRL presents a powerful technique for
handling the intricate demands of precoded cluster hopping,
outperforming LP and greedy methods in the process. DRL
might have a higher training complexity but can lead to
efficient decision-making once trained. Greedy algorithms and
LP could be computationally efficient for smaller instances but
might lack optimally guarantee. While greedy algorithms make
locally optimal decisions, they may not guarantee global, LP
can be limited by memory and time for larger instances.

V. CONCLUSTION

We have proposed a DRL method for enhancing beam-
hopping and precoded in multi-beam GEO satellite com-
munication systems. We have compared the effectiveness of
our DRL-based approach greedy algorithm through extensive
simulations. This demonstrates how DRL has the potential
to be an effective solution for increasing multi-beam satellite
communication systems’ efficiency and performance.
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