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Abstract—This paper presents a novel approach in enhancing
Unmanned Aerial Vehicle (UAV) communication systems through
the application of reliable Electroencephalogram (EEG)-based
Motor Imagery signals. The concept of EEG signals and the active
role that Motor Imagery (MI) signals can play in UAV systems
is explored, along with the efficiency aspects and algorithmic
superiority of the communication system, demonstrating how the
EEG information signal is reliable enough to be utilized in a
UAV communication system. The results provide a performance
evaluation of the CNN model along with a comparison to other
learning models, and an analysis of the spatial separation in the
brain. The study concludes by suggesting the implications of the
findings for UAV communication and AI in future researches.

I. INTRODUCTION

The advent of Unmanned Aerial Vehicles (UAVs) has
brought about a significant transformation in numerous sectors,
including surveillance, disaster management, and environmen-
tal monitoring. The success of these applications depend
heavily on the robustness and reliability of its communication
systems. Traditional communication methods, while effective,
are not without their limitations. Issues such as latency and sig-
nal interference present challenges that need to be addressed.

Fig. 1. Utilization of brainwaves in UAV operations

In this context, the application of Electroencephalogram
(EEG) signals presents an intriguing frontier. EEG signals,
the electrical activities generated by the brain, offer a unique
blend of information that can be harnessed to enhance commu-
nication systems. Among these, Motor Imagery (MI) signals,
generated when an individual imagines performing a specific
action, hold particular promise [1].

MI signals are types of EEG that are generated when
an individual imagines performing a certain behavior, even
without necessarily executing the physical behavior [2]. These
signals can be utilized to create a direct link between the user’s
intent and the control of an external devices. This opens up
the opportunity to use MI signals for applications in UAV
communication systems.

The use of MI signals in UAV communication systems is
not merely a novel approach; it represents a paradigm shift
in how we perceive and utilize communication systems [3]
By tapping into the brain’s electrical activity, we open up a
new dimension of intuitive and natural control. This approach
also democratizes access to UAV control, extending it to
individuals with physical disabilities. Moreover, the use of MI
signals can potentially lead to more efficient and responsive
UAV systems, as the delay between thought and action can be
significantly reduced [4].

Similarly, the issue of signal interference can be mitigated
by the unique characteristics of MI signals. Unlike traditional
communication signals, which can be affected by external
electromagnetic interference, MI signals are generated inter-
nally and are therefore less susceptible to such interference.
This makes them a reliable source of signals for UAVs [5].

This paper presents a comprehensive exploration of the
potential of EEG signals, particularly MI signals, in enhancing
UAV communication systems. It provides a detailed overview
of the methodology, discusses the challenges currently faced
by UAV communication systems, and presents potential solu-
tions based on the use of EEG signals [6]. Fig. 1 illustrates
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Fig. 2. Experiment setup and dataset construction for EEG extraction

the process of measuring EEG, extracting the desired target
signals, and controlling the drone’s actions with these signals.

Methods of detailed EEG measurement were a crucial part
of this study, which involves the following. Wavelet denoising,
eliminating noise from the EEG, was required to preserve the
essential features of signals. Fast Fourier Transform (FFT),
used to transform the EEG signals from the time domain to
the frequency domain, provided a different perspective on the
data. Finally, Convolutional Neural Network (CNN)s, a class
of deep learning algorithms, were used to automatically and
adaptively learn spatial hierarchies of the EEG signal features
[7, 8].

II. EXPERIMENTATION

A. Measurement

The first step to utilizing EEG signals is to accurately
measure them, which is the process of attaching wet electrodes
to the scalp to capture the brain’s electrical activity. Medical
gel was applied to each of the 24 electrodes to stably attach
them to the scalp, which resulted in an average resistance value
of 3.8 kΩ across all channels, adequate for EEG measurement.
Fig. 2 shows the EEG measurement setup, which consists of
LAXTHA’s QEEG-64FX hardware and electrodes. The EEG
signals were analyzed and extracted through a total of 24
channels, one channel for each electrode.

The training data was constructed by crawling 2.5-
second videos of the drone moving in a specific direction
(left/right/up/down/forward). For the EEG measurement, the
videos were randomly played to the subjects, while avoiding
more than two consecutive videos of the same category,

considering the contrast effect of continuous videos and ha-
bituation (desensitization to drone videos). The subjects had
their EEGs measured for an hour, divided into 10 minute
intervals, for the probability of extracting a complete MI signal
increases when the subject is concentrating. The two seconds
of data immediately after each video was recorded as a single
waveform.

The collected signals were converted and processed into a
format that could be used to train the learning model. Since
blinking or head movement causea spikes in all 24 channels,
a pre-processing was required before the process of a noise
filtering algorithm.

B. Algorithm

The signals then undergo a series of transformations before
motion classification, as illustrated in Fig. 3. The first of
these is wavelet denoising. EEG signals can be contami-
nated with various types of noise, including muscle artifacts,
power line interference, and other external electromagnetic
waves. Wavelet denoising works by decomposing the signal
into different frequency components using wavelets and then
thresholding the wavelet coefficients to remove noise. The
result is a cleaner signal that retains its essential features.

Following the denoising process, the FFT transforms it from
the time domain to the frequency domain. This frequency
domain representation provides insight into the power distri-
bution of the various frequency bands of the EEG signal. This
is important for feature extraction, especially since certain
frequency bands, such as beta waves, are associated with
specific cognitive tasks or motor imagery behaviors. With this
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Fig. 3. CNN architecture for EEG spectrograms classification

conversion to the frequency domain, we can extract more
accurate features for a specific task [8, 9].

The spectrograms of the signals, which are representations
of the spectrum of frequencies of a signal as it varies with
time, are then used as input for the CNN. The CNN applies
convolution and Rectified Linear Unit (ReLU) operations to
the input. In the context of a CNN, the convolution allows the
network to process features which are crucial for understand-
ing the patterns in the EEG signals. ReLU introduces non-
linearity into the network, aiding it to learn from the complex
patterns in the data.[10, 11] The signals are then pooled to
decrease the computational complexity of the network, making
it more efficient. Moreover, pooling helps in extracting the
dominant features of the EEG signals, which are crucial for
the classification task.[12]

Finally, the signals are passed through a Softmax function.
The function outputs a vector that represents the probabil-
ity distributions of potential outcomes. This process allows
motion classification, distinguishing the motions of the drone
based on the processed EEG signals. The output of the
Softmax function can be interpreted as the probability that the
EEG signal corresponds to a particular motor imagery task,
which can be used to command the drone’s movements.

III. SIMULATION RESULTS

The simulation results presented in Fig. 4 are the result of
the experimenter imagining the movement of the drone and the
algorithm judging the extracted signals. The spatial activation
of the brain is shown when the user imagines the drone moving
left or right. The left and right-hand sides of the brain in the
parietal and occipital lobes were activated when imagining
the drone flying in either direction. This result confirms a
key premise of our approach: spatial segregation of the brain
during different motor imagery tasks.

Fig. 4. Spatial activation and confusion matrix

The confusion matrix provides additional insight into
the performance of the system. This matrix shows the
predicted and actual classifications for each of the five
categories. Zero through 4 correspond to the categories
(left/right/up/down/forward). We can see that the system
achieves high accuracy in the ‘left’ and ‘right’ categories, with
88% accuracy each. The ’forward’ category also achieves a
high accuracy of 94%. These results suggest that our system
can effectively interpret the user’s intentions based on the
user’s EEG signals.

However, the ‘up’ and ‘down’ categories were relatively
more difficult to classify. One possible explanation for this
phenomenon is the spatial distribution of brain regions in-
volved in these tasks. The parietal and occipital lobes, which
are primarily responsible for processing visual and spatial
information, are more activated when subjects imagine a left
or right movement. The ‘up’ and ‘down’ movements, on the
other hand, can involve a wider range of brain regions, making
it more difficult to distinguish between these two categories
based on EEG signals.

Overall, the simulation results show that our proposed EEG-
based UAV control communication system is reliable, and that
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the it achieves a reasonable accuracy in classifying different
motor imagery tasks, confirming the feasibility of using EEG
signals for drone control.

IV. CONCLUSION

This study presents a novel approach for controlling drones
using EEG signals, with a particular focus on MI tasks. The
proposed system leverages the power of CNN to classify the
EEG signals into different categories, corresponding to the
intended direction of the drone’s movement.

The simulation results demonstrate the effectiveness of
the proposed system. High accuracy rates were achieved for
the ‘left’, ‘right’, and ‘forward’ categories, confirming the
system’s ability to accurately interpret the user’s intention
based on their EEG signals. These results underscore the
potential of EEG-based systems for controlling drones and
other external devices.

However, the study also revealed challenges in classifying
the ‘up’ and ‘down’ categories. This observation could be
attributed to factors such as the spatial distribution of the brain
regions involved in these tasks and the inherent variability in
the way individuals perceive and interpret ‘up’ and ‘down’
movements. Addressing these challenges will be a key focus
of future works.

In addition to improving the classification accuracy, future
research should also explore the potential of distributing the
computational load between the transmitter and receiver ends.
This approach, which involves transmitting the characteristic
space of the brain waves over the communication link, could
lead to improved power consumption and computational effi-
ciency.

In conclusion, this study represents a significant step for-
ward in the field of EEG-based drone control. The proposed
system, with its high accuracy rates and potential for improved
efficiency, offers a promising direction for future research and
development in this area.
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