
Trends in Deep Reinforcement Learning for
Distributed Coordination and Cooperation with

Homogeneous Multi-Agents
Joongheon Kim

School of Electrical Engineering, Korea University, Seoul, Republic of Korea
E-mail: joongheon@korea.ac.kr

Abstract—Deep Reinforcement Learning (DRL) has gained
traction as a potent method for improving the real-time sequential
decision-making abilities of autonomous vehicles, thereby stimu-
lating a wealth of research in this area. However, in complex
environments where autonomous vehicles must interact with
various agents like pedestrians and other vehicles, the neces-
sity for a multi-agent approach becomes evident. While agent
communication is fundamental for efficient decision-making, its
integration into DRL can be challenging. To address this problem,
this paper explores inter-agent information sharing by a Com-
munication Network (CommNet) that allows agents to efficiently
make collective decisions only based on observed information. In
this paper, the benefits of employing CommNet in a variety of
real-world applications are evidenced, particularly where agents
of autonomous vehicles must engage in information exchange
in dynamic environments. Overall, the importance and potential
benefits of the proposed strategy for autonomous vehicles are
underscored to bolster their decision-making prowess.

I. INTRODUCTION

Deep reinforcement learning (DRL) offers a consider-
able benefit in that it facilitates sequential decision-making
grounded in its learned policies, obviating the necessity to ex-
plore every conceivable situation to identify the most effective
solution [1]–[6]. Thus, in circumstances where optimization
reliant on dynamic programming is applied due to vast search
spaces, or in settings punctuated by unexpected uncertainties
that cannot be mathematically modeled, DRL is capable of
delivering immediate and adaptable reactions to the given
states [7]. However, it is common for conventional DRL
algorithms to struggle to achieve optimal policy cooperatively
when several agents are involved, which results in subpar
performance or even reward convergence failure [8]–[10].
The particular reason is that multiple agents can have an
impact on one another’s performances in determining the best
course of action toward a shared objective. In addition, all
agents compete with each other in order to find only their
own optimal policy without cooperation since traditional DRL
algorithms consider a single-agent environment. These factors
make multi-agent deep reinforcement learning (MADRL) en-
vironment non-stationary. Recent research has concentrated on
developing meaningful MADRL algorithms that allow agents
to communicate and coordinate with one another in order to
address this difficulty.

One promising strategy to find an optimal policy in MADRL
is using a communication network (CommNet) [11], which

is a type of neural network enabling agents to communicate
and share information throughout the learning process. By
allowing agents to interact with each other, CommNet helps
them learn to coordinate their actions better without a cen-
tral controller. This can stimulate faster reward convergence
and more outstanding performance than previous techniques.
Multifaceted applications to autonomous vehicles, such as
cooperative charging scheduling [12], [13], surveillance [14],
and traffic signal control [15], have demonstrated the utility
of CommNet.

CommNet-based agents engage in information sharing by
transmitting encoded hidden variables rather than directly
relaying observed information, similar to the approach in Fed-
erated Learning (FL) [16]–[18]. This method offers enhanced
security during the communication process. Therefore, even
in sensitive autonomous driving scenarios, like ambulances
operating within hospital settings where secure information
sharing is crucial, the application of CommNet allows for
the secure exchange of sensitive information among agents
without infringing on data privacy.

This paper aims to present a comprehensive explanation
of CommNet in MADRL applications. Findings from several
previous publications demonstrate how well CommNet helps
multiple agents learn to communicate and coordinate their
actions appropriately. These discoveries can aid in creating
more sophisticated and efficient MADRL algorithms and make
them easier to adopt in real world applications that call for col-
laboration among multiple agents. Overall, this work advances
knowledge of the effect of CommNet in MADRL and offers
insights into its use in versatile scenarios. In addition, this
paper hopes to encourage additional research in this field by
paving the way for developing more practical and progressive
MADRL algorithms.

II. COOPERATIVE MADRL USING INTER-AGENT
COMMUNICATIONS

CommNet allows multiple agents to communicate with each
other through a piece of shared information as illustrated in
Fig. 1. Each j-th agent has its own neural network that takes
in the agent’s observations oj , and ground truth state sj .
This information is entered into the first hidden layer as an
input. Hidden layers consist of a number of neurons, and they
are fully connected with next hidden layers [19]. Every i-th
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Fig. 1: Structure of inter-agent communication for collaborative multi-agent interaction leveraging CommNet.

hidden layer outputs a hidden state hi
j which corresponds to

the input of the i+1-th hidden layer. However, in CommNet,
this hidden state is then combined with the hidden states of
other agents through the communication step before being
fed into the next hidden layer. In the communication step, a
single j-th agent gets the communication variable cij which is
made by averaging the hidden states of other agents except
for itself as depicted in the below part of Fig. 1. Using
communication variable cij , the output of the communication
step, as an additional input allows the agent to update its
policy based on the information received from other agents.
As a result, agents can learn to effectively coordinate their
policies through communication without centralized control
or explicit coordination rules. Afterward, the i-th module
f i(·) transforms a concatenation of the hidden variable and
communication variable

[
hi
j , c

i
j

]
into the next layer’s hidden

variable hi+1
j using activation function such as ReLU, tangent-

hyperbolic, or Sigmoid function. This communication process
is repeatedly performed until it has reached the last hidden

layer. Finally, agent can get the probability of all possible
actions by conducting the softmax function to the decoded
output of the last hidden layer. By doing so, each agent
can make sequential decision-making considering not only
its information but also other agents’ information. In other
words, agents take dependent actions cooperatively, albeit with
getting independent experience in environments. In a nutshell,
CommNet is a powerful and flexible approach to MADRL that
enables agents to learn to communicate and coordinate their
actions effectively to achieve a common goal.

III. APPLICATIONS

This section presents the applications of CommNet, as
summarized in Table I. These studies exemplify the applica-
tion of real-time inter-agent information sharing in achieving
objectives, specifically in the context of autonomous vehicle-
type agents. To the best of the author’s knowledge, they stand
out for their unique employment of the CommNet algorithm
in real-world autonomous driving settings, emphasizing the
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TABLE I: Applications of Information Exchange among Different Agents in Autonomous Vehicles

Shin et al. [12] Jung et al. [13] Yun et al. [14] Park et al. [23]

Objective Charging Scheduling Charging Scheduling Surveillance Cellular Access
Vehicle Type Electric Vehicles UAVs UAVs UAVs
Agent Charging Stations Charging Towers UAVs UAVs
Action Purchasing Energy Purchasing Energy 2D Trajectory, Coverage 3D Trajectory
Reward Payment Amount, Overcharging Payment Amount, Overcharging Support Rate, Resolution Support Rate, QoS

novelty and uniqueness of such applications in these scenar-
ios. In addition, they adopt single-agent DRL algorithms as
comparators to evaluate the proposed method’s performance.
While there are other prominent MADRL algorithms, such
as Value-Decomposition Networks (VDN) [20], QMIX [21],
and Counterfactual Multi-Agent (COMA) [22], they typically
base their state-value function V (S) on a global state S for
learning policies. This approach becomes impractical for real-
time services due to the difficulty of aggregating extensively
scaled global states. In contrast, the proposed approach permits
agents to learn policies solely from their observed information,
making it more suitable for realistic scenarios. Hence, this
study compares with single-agent DRL algorithms rather than
other MADRL algorithms to validate the power of policy
learning via inter-agent communication, considering realistic
scenarios.

A. Charging Station Scheduling for Electric Vehicles

Scenario Overview. In the Industry 4.0 Revolution era, the
electric vehicle (EV) is considered as one of major players for
autonomous vehicles, because it is easier to control their mo-
tors’ rotation without delay. In light of these trends, optimizing
the energy use and operation costs of EV charging stations
(EVCSs) based on information regarding supplier-consumer
patterns for cost-effectiveness is critical. Although previous
researchers have studied EVCS operation optimization, they
suggested a centralized approach. However, it is challenging
to come up with a real-time centralized solution for process-
ing massive dynamic time-varying data. To solve the given
problem, learning-based and distributed approaches are widely
utilized. Thus, Shin et al. propose a decentralized MADRL-
based optimization to manage huge data while considering the
use of energy storage system (ESS) and photovoltaic (PV)
power production for EVCSs [12]. Here, a single private
enterprise manages multiple EVCSs equipped with renewable
energy resources. Each EVCS can provide energy to EVs
with its own ESS and other EVCSs’ ESS while charging
energy with its mounted PV charger. At this time, EVCSs
share only the remains of surplus energy after meeting their
net demand. By doing so, every EVCS can meet net demand
reducing overall operating costs by managing surplus energy.
Shin et al. utilize CommNet for all EVCS agents’ training
policies to manage the charging/discharging of the energy
stored in the ESSs cooperatively. Every EVCS agent jointly
needs to minimize purchasing energy from the enterprise while
observing the energy state and prices.
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Fig. 2: Comparison of the operation cost in each training
method.

Performance Evaluation. Shin et al. conducts a controlled
experiment with independent variable σ that is the reward
coefficient influencing the significance of the amount of energy
charged into the ESS to fulfill the overall net demand. It
means that a larger value of σ implies a greater necessity for
residual energy, which in turn results in a higher operational
cost for the EVCS. Here, three EVCS provide electric vehi-
cle charging services. The proposed inter-agent information
sharing algorithm is employed to learn policies by setting the
value of σ to 1, 2, and 3, respectively. These strategies are
explicitly labeled as Proposed 1, Proposed 2, and Proposed 3
as illustrated in Fig. 2. They compare the performance of the
proposed mutual information sharing between multiple agents
with the conventional DRL algorithms with σ = 1 including
Deep Q-Network (DQN) [24] and Proximal Policy Optimiza-
tion (PPO) [25], which corresponds to Comp1 and Comp2,
respectively. In addition, there is a random algorithm where
each EVCS agent takes action randomly without observing
states, such as the cost of electricity and residual energy
in ESS. As a result, the ESS operation cost of the EVCS
agents trained by DQN or PPO is almost double to that of the
proposed CommNet-based management system, when σ = 1.
In addition, it is noteworthy that the proposed CommNet-
based ESS management outperforms the policy learning in
terms of operating costs, even though σ is two or three times
bigger than other benchmarks. It can be understood that by
sharing their current state among different EVCS agents, it
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minimizes the amount of energy purchased by cooperatively
sharing energy from EVCS with sufficient remaining energy
to those with limited energy at present.

B. Charging Scheduling for UAV Networks

Scenario Overview. The energy management framework also
can be adopted in unmanned aerial vehicle (UAV) networks.
UAV is one of the sixth generation (6G) core technologies be-
cause it can provide flexible network service [26]. In particular,
efficient energy management is essential since they have an in-
sufficient battery capacity, where the operation time is limited
to few hours. In addition, it is burdensome to control ESS
management centrally while managing sensing data gathered
by multiple UAVs. Thus, Jung et al. propose cloud-assisted
charging scheduling via CommNet [13]. Here, multiple dis-
tributed charging towers serve plug-and-play charging during
run-time operations. Every charging tower trains its policy for
efficiently providing energy to UAVs with intelligent energy
sharing collaboratively. As in [12], all charging tower agents
have the common goal of minimizing payment amount and
overcharging.
Performance Evaluation. In the considered scenario, there
are four charging towers that provide charging services to
UAVs, and each charging tower can share energy with one
another. Jung et al. execute experiments involving the pro-
posed inter-agent communication strategy, contrasting it with
DQN and a MADRL-disable rule-based random action. These
comparative elements are referred to as Comp1 and Comp2,
respectively. The total purchased energy in each training
progress is depicted in Fig. 3. It can be observed that the
charging towers in the proposed algorithm purchase the least
amount of energy. It implies that the proposed algorithm
efficiently shares energies across charging towers to minimize
operating expenses while maximizing shared energy. This out-
come arises from the differences in information sharing among
the charging towers. By exchanging information among the
charging towers, they make decisions in an optimal manner,
aiming to efficiently supply energy to the entire UAV network,
rather than focusing on individually optimal choices.

C. Surveillance for UAV Networks

Scenario Overview. One of the many-sided UAV applications
is flexible mobile surveillance [26], where UAVs provide on-
demand surveillance by dynamically updating the locations.
Furthermore, they can access extreme environments whereas
physical limitations exist. However, there are various uncer-
tainties that UAVs face, such as hardware damage regarding
accidents with obstacles or insufficient battery. Furthermore,
when multiple UAVs collide with each other, overlapping their
surveillance coverage leads to service inefficiency. Thus, pro-
viding reliable autonomous surveillance services is essentially
required. Yun et al. provide MADRL-based multi-UAV control
using CommNet with one leader UAV and the others as non-
leader UAV [14]. Here, the leader UAV decides its action
by reflecting the information of all the others, while non-
leader UAVs take an optimal action based only on their own
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Fig. 3: Comparison of purchased energy in each training
method.

Proposed Comp1 Comp2

0 2.5 5
Epoch 104

0

500

1000

To
ta

l R
ew

ar
d

0 20 40
Time [Minute]

0.4

0.5

0.6

Su
pp

or
t R

at
e

Time [Minute]

Su
pp

or
t R

at
e

0.4

0.5

0.6

20 40

Fig. 4: Comparison of support rate in each training method.

information, like a single agent DRL. As noted in Table I,
multiple UAVs in the system jointly move 2D trajectories
or control video resolution (i.e., coverage radius), aiming to
monitor a large number of users with high video resolution.

Performance Evaluation. In the considered scenario, there
are four UAVs, differentiated by the number of UAVs learning
their CommNet policies and classical deep neural network
(DNN). Yun et al. comprises only one CommNet-based leader
UAV and three DNN-based non-leader UAVs. The remain-
ing two benchmarks, Comp1 and Comp2, consist only of
CommNet-based UAVs and DNN-based UAVs respectively.
These four UAVs have the capability to move in a cardinal
direction or perform quality control on surveillance image at
each time step in 2, 400m × 2, 400m 2D grid map. Addi-
tionally, there are three non-DRL UAVs to test adaptability
to environmental uncertainties that cannot be mathematically
modeled. These UAVs provide surveillance services from
fixed locations and experience random failures with a certain
probability. Fig. 4 shows the support rate of UAVs with trained
policies. The suggested surveillance scheme exhibits the high-
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Fig. 5: Comparison of QoS in each training method at POMDP
environment.

est level of support rate throughout nearly all episodes, and
has the same support rate as Comp1 at the end of the episode.
This result indicates that the proposed scheme consistently
demonstrates the strongest surveillance performance. However,
Comp2, which does not utilize CommNet (i.e., no inter-agent
communications) shows the lowest surveillance performance
in all episodes. Therefore, when comparing the performance
difference between the Proposed/Comp1, which incorporates
inter-agent information sharing (i.e., locations of users and
other UAVs), and Comp2, which does not, it can be confirmed
that the CommNet-based strategy enables a more cooperative
and effective response to uncertainties such as UAV failures.
This strategy allows for the successful achievement of shared
objectives.

D. Mobile Cellular Access for UAV Networks

Scenario Overview. UAVs can also provide on-demand wire-
less communication services anywhere at a low cost since
there is no need to construct an extra ground base station.
Here, an UAV serving as the base station is referred to as
UAV-BS. Park et al. propose CommNet-based multi-UAV-BS
control for reliable mobile cellular access [23]. This paper
demonstrates the effectiveness of inter-agent communications
in partially observable Markov decision process (POMDP)
and fully observable Markov decision process (FOMDP) [27].
Assuming the FOMDP means that the agent can observe
entire environmental information, where this assumption is
not realistic due to the fact that each agent has a limited
observation because of physical limitation. Therefore, it is
vital to adopt CommNet to multi-agent cooperation in real
world, formulated by POMDP. UAV-BS cooperatively tries to
maximize the support rate and quality of service (QoS) of
ground user equipments (UEs), as in Table I.
Performance Evaluation. The configuration of multiple UAV-
BSs is similar to work in [14], but in this case, they move in
a three-dimensional (3D) trajectory in 6, 000m× 6, 000m×
2, 500m grid map, and the coverage radius is determined by
the altitude of them. In addition, every UE requests different

data rates for services such as video streaming, online gaming,
or web surfing. For the received QoS of ground UEs, theoret-
ical data rates are calculated, taking into account factors such
as the distance between the UAV-BS and UE, and interference
from other UAV-BSs. These theoretical data rates are then
matched with the Modulation and Coding Scheme (MCS) table
of IEEE 802.11ad, and a quality function fv(·) in [28] is
applied to calculate the actual data rate. Fig. 5 shows the QoS
received by terrestrial UEs over policy training epochs. Bench-
marks are identical to the aforementioned autonomous surveil-
lance system [14]. Benchmarks utilizing CommNet (Proposed
and Comp1) show a faster reward convergence speed and more
stable learning performance than Comp2 which only consists
of the DNN-based UAV-BSs. In addition, the proposed mobile
access network is superior among all benchmarks in terms
of service quality. However, it is noteworthy that Comp1,
which only has CommNet-based UAV-BSs, has the lowest
QoS value. The improved performance can be attributed to
the effective coordination between CommNet- and DNN-based
policies, which leverages the abundant experience accumulated
by DNN-based agents within a specific area in POMDP,
particularly in large-scale maps. Nevertheless, the proposed
inter-agent information sharing strategy indicates the ability
to establish a more cooperative and effective mobile access
network with the highest QoS value compared to Comp2,
which does not engage in information sharing.

IV. CONCLUDING REMARKS

This paper presents the advantages of employing inter-
agent information sharing in the context of MADRL for
autonomous vehicles. The results derived from various exper-
iments showcase that the integration of decentralized inter-
agent communication can substantially improve the efficiency
of multiple agents operating within complex and dynamic
environments, yielding enhanced learning speeds and superior
performance. Moreover, the preliminary findings from poten-
tial real-world applications of the proposed strategy provide
promising prospects for future research and development.
Notable examples of these applications include the collabo-
ration of multiple robots in a smart factory setting and the
cooperation of multiple agents for providing real-time services
in caching scenarios for saving computing resources in com-
munication environments. The authors of this paper believes
that that the insights generated through this research can pave
the way for more sophisticated autonomous vehicles, capable
of operating safely and effectively in real-world conditions.
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