
A Recent Reinforcement Learning Trend for
Vehicular Ad Hoc Networks Routing

Woongsoo Kim, Junhong Min, Yongseok Son, and Jeongyeup Paek

Department of Computer Science & Engineering, Chung-Ang University, Seoul, Republic of Korea
{woongsu0614, dmc93, sysganda, jpaek}@cau.ac.kr

Abstract—Vehicular ad hoc networks (VANETs) are one of the
most essential parts of intelligent transportation system (ITS).
VANETs fulfill a crucial role in continuous traffic monitoring,
emergency message transmission, and in-vehicle infotainment
services. Given the short communication distance, constraints
of unpredictable traffic environments, and the dynamic topology
caused by high mobility, effective VANET routing is vital for
network performance. However, prior ad hoc routing schemes in
the literature are unsuitable for VANETs dynamic environments.
For this reason, recent works focusing on VANETs have proposed
reinforcement learning (RL)-based approaches. In this paper, we
survey the literature that tackles the VANET routing problem
using RL, summarizing which RL algorithms are used and
their optimization goals. In addition, we analyze and discuss
the limitations of RL-based approaches to propose guidelines for
promising VANET routing solutions for constructing the future
of ITS.

Index Terms—Vehicular Ad Hoc Networks (VANETs), In-
telligent Transportation System (ITS), Routing, Reinforcement
Learning

I. INTRODUCTION

Vehicular ad hoc networks (VANETs), an essential part of
intelligent transportation system (ITS), offer a suitable tech-
nology to enhance road safety and traffic efficiency. VANETs
support applications like emergency alerts, road safety, and
collision prevention through vehicle-to-vehicle (V2V), vehicle-
to-infrastructure (V2I), and vehicle-to-everything (V2X) com-
munication, helping to implement key functionalities of ITS
such as traffic monitoring [1], emergency message communi-
cation [2], and in-vehicle infotainment services [3].

However, there are several challenges to realizing VANETs,
including the high mobility of vehicles, unpredictable traffic
environments, and unstable wireless links. Without suitable
approaches to overcome such difficulties, VANETs can un-
dergo frequent communication link disconnections due to their
dynamic network topologies. For VANET routing, many prior
works based on heuristics have been proposed. Generally,
they can be classified into broadcast-based, geocast-based, and
unicast-based methods. Broadcast-based routing [4] facilitates
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Fig. 1: ITS scenario with VANET routing

multi-hop communication through flooding, while network
congestion can occur due to excessive packet transmission.
Geocast routing [5], on the other hand, sends data traffic in a
specific direction to decrease congestion than broadcasting,
but it requires knowledge of vehicle locations beforehand.
Unicast routing [6] is efficient in using bandwidth and min-
imizing traffic; however, it is vulnerable to frequent changes
in network topology and communication disconnection. For
instance, Fig. 1 illustrates an emergency message communi-
cation scenario using unicast-based VANET routing in ITS
when an accident occurs.

Recently, reinforcement learning (RL) has been considered
a promising solution for VANET routing, which can overcome
traditional drawbacks. RL is one of the machine learning
approaches which enables agents to learn optimal decision-
making through interactions with the environment. Using the
RL model for VANET routing can be more effective than tra-
ditional routing protocols in terms of scalability and robustness
because they can interact with dynamic environments with
feedback to learn. However, there are still some limitations.
For example, RL-based approaches cannot guarantee success-
ful routing with observation of a single agent determined with-
out observations of other agents [7]. For this reason, efforts
are emerging to model and solve the VANET routing problem
by utilizing multi-agent reinforcement learning (MARL).
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Fig. 2: Optimization objectives for RL-based VANET routing
algorithms

This paper aims to provide future direction for RL-based
VANET routing. Therefore, we explore prior works for RL-
based VANET routing. Specifically, we compare several met-
rics and algorithms for their different objectives. Then, we
discuss the limitations of prior works. Finally, we would like to
find out which parts of RL-based VANET routing are currently
on-problem and present guidelines for improvement in future
research.

II. OVERVIEW OF RL-BASED VANET ROUTING

Unicast is considered the least resource-consuming ap-
proach in VANET routing. However, it requires designing the
optimal routing from the source to the destination. In this sec-
tion, we present an overview of the RL-based VANET routing
topics, and what is needed for efficient VANET routing.

According to our survey, the most studied RL algorithm in
RL-based VANET routing is a model-free algorithm, and q-
learning is the most used among them. Most studies use the
model-free algorithms for more realistic assumptions [8]. The
road side unit (RSU) is an important device for collecting and
disseminating traffic information to vehicles. However, deploy-
ing RSU everywhere around the road is difficult. Furthermore,
network congestion may lead to potential RSU unavailability.
To address this, we consider classifying VANET routing into
two scenarios as shown in Fig. 2; RSU-assisted VANET rout-
ing and vehicle-only communication based VANET routing.
The primary objective of VANET routing is to discover the op-
timal communication path for routing and optimize link quality
to maintain stable, reliable routing. Efficient routing algorithms
aim to achieve several goals, such as minimizing the number
of hops, reducing end-to-end delay, and finding the shortest
path. These algorithms utilize information provided by the
surrounding vehicle environment to find the optimal path for
efficient routing. In addition, improving link quality focuses
on enhancing bandwidth efficiency, ensuring uninterrupted and
secure link connections, and mitigating potential threats from
malicious nodes. With this overview, we introduce RL-based
VANET routing studies according to the perspective with and
without RSU, and present consideration for improving RL
algorithms which are used in subsequent sections.

III. SURVEY OF VANET ROUTING WITH RL

In this section, we take a detailed look at the studies by
algorithm from the point of view related to the goal of VANET
routing. In the following subsections, we provide explanations
for the references cited in Table. I, which are organized
based on the objectives of efficient routing. We categorize
the literature of routing without RSU focusing on vehicle-
only solutions based on routing relaying strategies such as
greedy, clustering, and various link Quality of Service (QoS)
metrics. On the other hand, RSU-assisted solutions focus on
selecting efficient routing by selecting the intersection, road,
and next hop using one huge RSU or all RSU placed in
multiple intersections. We present the result of surveyes in
the latest works of RL-based VANET routing protocols, both
in without RSU and RSU-integrated scenarios.

A. Q-learning

Q-learning is the most popular and widely used RL-based
routing algorithm recently among researchers. It employs a
q-table to store and update values representing the expected
rewards for different state-action or action values.

Li et al. [9] propose a greedy algorithm based on q-learning,
where the geographical area is divided into grid regions.
This algorithm continuously selects the next grid to head
towards. By offline learning with road data, it is possible to
achieve high-performance routing focusing on areas with high
traffic density to ensure connectivity. Wu et al. [10] propose
a protocol that utilizes hello packets to periodically update
the information in the one hop table and q-table, enabling
adaptive learning of the efficient route. And also a novel
hello packet structure is designed to avoid routing loops. Ji
et al. [11] propose an RL-based real-time path exploration
hybrid routing that detects blind paths with potential link
disconnection risks, even without time expiration. The routing
table is updated to mitigate intermittent link disconnections in
dynamic VANET environments. Additionally, the q-table size
is limited to prevent high computational costs. Several studies
[12], [13] evaluate and enhance the performance of cluster-
based VANET routing algorithms using q-learning approaches.
These algorithms define link states through techniques such
as fuzzy logic or the Gaussian mixture model to enhance
the stability of links between clusters. Wang et al. [14]
applying q-learning a VANET routing algorithm to utilize
software-defined network (SDN)-enabled RSU to detect the
traffic situation and dynamically select a more suitable routing
algorithm between GPSR and AODV. Several other works
[15]–[17] also aim to enhance the performance of efficient
routing finding using RSU. A common characteristic among
these works is the selection of the optimal next hop within
the road segment at an intersection. Notably, these works
construct scenarios assuming the existence of an RSU at each
intersection.

B. Deep Reinforcement Learning

Deep reinforcement learning (DRL) is a solution that com-
bines RL and deep learning, a technique in which an agent
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TABLE I: Comparison objectives among RL algorithms

Algorithm Objective Routing strategy Link QoS Metrics Improvement Reference

Q-learning

Vehicle-only efficient
grid-based routing

Grid-based greedy
routing with q-learning Reliable link Vehicle position

Link reliability,
transmission delay,

throughput
[9]

Vehicle-only
efficient routing

Greedy routing
with q-learning Stable link Vehicle position

End-to-end latency,
packet delivery ratio,

number of hop
[10]

Vehicle-only
efficient routing

Link life time
with distance

between one hop
Fresh link Link life time,

one hop distance
Packet delivery ratio,

rount trip time, overhead [11]

Vehicle-only efficient
cluster-based routing

Cluster-based
routing with
q-learning

Fuzzy logic or
Gaussian mixture model

based stable link

Cluster distance,
link reliability

Link reliability,
transmission delay,

throughput
[12], [13]

RSU-assisted
efficient routing

algorithm selection

Routing algorithm
selection with

q-learning

Vehicle speed
and vehicle density

based stable link

Vehicle speed,
vehicle density,

latency
Packet delivery ratio [14]

RSU-assisted
efficient intersection,

road, next hop selection

Greedy (Dijkstra)
routing with
q-learning

Vehicle position-based
reliabile link

Vehicle position
information,

link reliability

End-to-end latency,
packet drop rate,

packet delivery speed,
throughput

[15]–[17]

DRL

Vehicle-only
efficient routing

Evolved Dijkstra
routing with DQN Stable link Vehicle position,

one hop delay End-to-end latency [18]

Vehicle-only
secure message

routing

Secure intelligent
message routing

strategy with DRL

Reliabile link in
urgency situation

Vehicle distance,
message type,

security attribute

End-to-end latency,
high transmission security [19]

RSU-assisted
efficient trust

management routing

Trust value-based
routing with
DRL / DQL

Malicious node detection
for reliable link

Vehicle location,
forwarding ratio,
trust value, ETX

End-to-end latency,
throughput [20]–[22]

MARL

Vehicle-only
efficient routing Routing with MARL Fuzzy logic

based stable link

Vehicle speed,
vehicle density,

link quality

End-to-end latency,
packet delivery ratio,

overhead
[23]

RSU-assisted
efficient routing

Routing algorithm
selection with MARL Stable link Vehicle distance End-to-end latency,

packet failed ratio [24]

RSU-assisted
efficient trust

management routing

Grid-based secure
routing with MARL

Malicious node detection
for reliable link

Vehicle location,
time-to-live, angle
between mobility
and relay node

Packet delivery ratio,
number of hop [25]

interacts with its environment and learns to make decisions
that maximize rewards. DRL can simplify the solution by ex-
pressing it in the form of a function through a neural network,
enabling efficient solutions and large-scale data processing.

Zhou et al. [18] propose a evolved Dijkstra algorithm with
a deep q-network (DQN). In such cases, DRL-based routing
method with evolved Dijkstra algorithm can achieve near
minimum end-to-end delay in more feasible time to compare
with a graph-based method. Liu et al. [19] propose a DRL-
based intelligent message routing strategy for secure message
transmission considering multiple message types and vehicle
security in VANETs. The strategy adaptively selects routing
based on node distances and security attributes, enabling
fast and secure message transmission in VANETs. Zhang et
al. [20]–[22] propose several algorithms to choose the next hop
to enhance security and avoid malicious vehicles. SDN agent
learns based on DRL, deep q-learning (DQL) based framework
based on vehicle trust model and evaluates communication link
and expected transmission count (ETX) delay.

C. Multi-Agent Reinforcement Learning

MARL is a technique that performs RL by considering
the interaction among multiple agents and the environment.
MARL-based VANET routing studies are used to explore effi-
cient routing through cooperative decision-making by multiple
agents and sharing experiences.

Jafarzadeh et al. [23] propose a MARL algorithm using a
model-based RL algorithm and fuzzy logic, aiming to select
links that can last as long as possible for routing. Each node
transmits its q-value and received packets are evaluated for
link connectivity based on fuzzy logic, then a neighboring
node is selected using softmax. Lu et al. [24] solve routing
selection optimization protocol using MARL. It uses the
epsilon greedy algorithm to select actions and stores them
in a replay memory to distribute the training of agents and
reduce network delay through optimized router selection. They
use a deep double q-learning network and dueling DQN to
improve convergence speed and stability perspective. Zhang
et al. [25] propose a grid-based approach, an online and
adaptive MARL algorithm considering security, to utilize route
mutation, commonly used in fixed topology, in VANET. They
use grid-based states to avoid routing through malicious nodes
and achieve routing based on the minimum angle relay nodes
for possible movement directions through joint action learning
using the estimated q-value.

IV. DISCUSSION

In this section, we explore the primary challenges currently
under investigation and outline the future research guidelines
for RL-based VANET routing, particularly focused on the
efficient unicast method. Some studies [9], [16], [17], [19],
[23], [24] clearly describe state, action, and reward, yet
the agent’s definition remains unclear. This ambiguity could
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potentially confuse researchers during model creation. To the
best of our knowledge, there has been no study dealing with
the latency of reward in a vehicle-only environment. In the real
world, reward feedback via VANETs communication might
not be instantaneous, and the state change needs to reflect
a result. In addition, studies using RSU assume that there
is an RSU at every intersection, or attempt to address the
matter via centralized structures such as SDN. However, these
assumptions are challenging to accept as realistic. Our main
investigation revolves around RL algorithms, categorized into
q-learning, DRL, and MARL, revealing prevalent challenges
within each. Difficulties arise when using q-learning because
the environment becomes too simple or the q-table becomes
too large in large-scale problems. Overcoming limitations of
q-learning can be achieved through DRL, which employs
functions instead of q-tables for solutions. Nevertheless, the
intricate tasks of data labeling and state correlation complicate
the learning process, and training with centralized aspects of
the DRL model for VANET agents demands difficult for-
malization. Addressing these complexities, MARL, which can
learn in various scenarios by cooperating with multiple agents,
seems to be a realistic solution in the VANET environment
where topology dynamically changes. However, challenges
such as potential overfitting problems, high computational
cost, and different agent targets still exist. We recommend
MARL as a promising solution for RL-based VANET routing
and simultaneously emphasize the need for continuous efforts
and research to solve the remaining problems.

V. CONCLUSION

VANETs are an essential component in ITS applications.
In this paper, we have surveyed the literature that tackles the
VANET routing problem using RL, and investigated how to
improve performance of VANETs by applying RL algorithms.
Additionally, we have briefly summarized methods and limita-
tions dealt with by the latest literature and presented research
directions to achieve realistic VANET routing.
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