
Unified Framework for End-User Authentication
Protocol in Feature-as-a-Service Models

Jaehyung Ahn, Junhong Min, Hyung Tae Lee, and Jeongyeup Paek

Department of Computer Science & Engineering,
Chung-Ang University,

Seoul, Republic of Korea
{lbr0452000, dmc93, hyungtaelee, jpaek}@cau.ac.kr

Abstract—Feature-as-a-Service (FaaS) is a new cloud comput-
ing model that simplifies the implementation of new features in
existing apps with minimal code modifications. One of the most
important characteristics of FaaS is that the FaaS server manages
its data independently of the service server. However, such a FaaS
scheme has a potential issue. Specifically, in the FaaS server,
authenticating end-users can be a problem because the service
server usually manages user and authentication data. Although
several FaaS products requiring end-user authentication have
their own authentication methods to address this problem, there
is no industry standard for a FaaS server to authenticate an
end-user; i.e., commercial FaaS products have individualized end-
user authentication methods. In this paper, we analyze existing
FaaS products and propose an introductory guideline about end-
user authentication methods for FaaS. This guideline aims to
help FaaS customers understand the FaaS’s authentication and
suggest implementation direction.

Index Terms—Feature as a Service (FaaS), System as a Service
(SaaS), Cloud Computing, Authentication, Protocol, Guideline

I. INTRODUCTION

Cloud computing has transformed the industry by abstract-
ing away the complexity associated with server configura-
tion [1]. Such abstraction can reduce the concern of con-
structing and maintaining server configuration. However, there
are still some difficulties with developing new features in
the service. Developing a new feature entails a considerable
amount of varied work, such as modifying the database
scheme, developing the front-end components, and handling
all the interactions with existing systems. Furthermore, certain
features may require extensive data collection or involve com-
plex collaborations between vendors and clients. For example,
developing geographic information systems or GIF sticker fea-
tures demands significant time for data collection while imple-
menting a chat feature necessitates intricate synchronizations
between the server and client. Therefore, instead of developing
them from scratch, integrating a pre-built feature module can

This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No.
2022R1A4A5034130 & No. 2021R1A2C1008840), and also by the MSIT
(Ministry of Science and ICT), Korea, under the ITRC (Information Technol-
ogy Research Center) support program (IITP-2023-RS-2022-00156353) super-
vised by the IITP (Institute for Information & Communications Technology
Planning & Evaluation)

derive substantial benefits because it can reduce the time and
effort required for implementing complex features.

Feature-as-a-Service (FaaS) is a cloud computing model
where individual software functionalities or features are pro-
vided as a standalone service. Since FaaS offers web API (e.g.
[2]) or even client UI library (e.g. [3]), it is considered a simple
and efficient approach for adding new features to existing
services. To simplify these development and implementation
process, FaaS has unique characteristics. Notably, it is note-
worthy that FaaS has a distinct server (called ‘FaaS server’),
and it manages its data independently of the service servers.
Due to this characteristic, there is a potential problem. Specif-
ically, the FaaS server cannot access the end-user information
in the service server. It creates a significant challenge for
certain FaaS products which require end-user authentication.
For instance, chatting FaaS needs to authenticate every end-
user and prevent other users from accessing specific user’s
data. For this reason, it is essential to have some end-user
authentication method for FaaS servers.

Despite the demand for end-user authentications in FaaS,
there is no industry standard. Therefore, companies have de-
veloped and used unique authentication methods [4] [5], and in
some cases, they may choose not to implement authentication
at all [6]. However, distinct authentication methods should
be adjusted to employ multiple FaaS in a single service.
In this case, as the number of FaaS in a service increases,
the associated logic and data maintenance costs can increase
significantly. As a result, the main advantage of FaaS can be
offset.

This paper focuses on the potential problem within FaaS
concerning the absence of a unified guideline for end-user
authentication. By creating a unified description and standard
terminologies for the authentication method, FaaS customers
can better comprehend the authentication logic and streamline
the related codes in their applications. To do this, we first
establish a guideline and terminologies for the end-user au-
thentication method of FaaS. Then, we briefly compare the
implementation methods of commercial products to provide
references for developers creating new FaaS products.

539979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Infrastructure
as a Service

Server Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Platform
as a Service

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Client Application

Networking

Software
as a Service

Feature
as a Service

Server Application

Client ApplicationClient Application

Server Application

Client Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Server
Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Server
Application

Cloud Provider Managed (optionally) User ManagedCloud Provider Managed

Fig. 1: Comparison between the cloud computing models [7]

Service Client
(End-User)

Service Server FaaS Server

Fig. 2: Roles in feature-as-a-service (FaaS) model

II. FEATURE-AS-A-SERVICE

Cloud computing has three representative models, such
as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), and SaaS (Software-as-a-Service) [8]. As a new model,
the FaaS has a unique architectural concept at the inter-
section of PaaS and SaaS. In this section, we explain the
FaaS architecture to comprehend why FaaS requires end-user
authentication, unlike other cloud computing models.

Fig. 1 illustrates the architectural configuration of FaaS
and other models. The principal concept of FaaS is that it
offers an API (Application Programming Interface) or an
SDK (Software Development Kit), with the backend server
fully managed by the cloud provider. FaaS is similar to
SaaS in providing an operational server, but they have some
differences. While SaaS fully manages client-side front-end
operations, FaaS can only support libraries or APIs for client-
side applications because it is designed for service developers.
For example, Slack [9], a SaaS-based product, provides a chat-
ting feature that customers can directly use as end-users. On
the other hand, in the case of Sendbird Chat [10], which offers
a chatting feature as a service, it provides a development kit
for incorporating the chatting feature. Specifically, Sendbird’s
customers have their own service, and within that service, end-
users can seamlessly utilize Sendbird’s chatting feature as if
it is an integrated part of the service software.

FaaS has three entities, as shown in Fig. 2. Their roles in
FaaS are as follows:

1) Service
Registration

End-
User

2) API-key
IssueService

Server FaaS
Server

Fig. 3: Authentication between FaaS and service server

1) Authentication
Grant

End-
User

2) Access
Token

2) Access
Token

3) API Request with Access Token

Service
Server FaaS

Server

Fig. 4: Authentication between FaaS server and end-user

• Service server is a backend server of a service. The service
server is needed to provide a login feature for end-users and
other features that FaaS does not provide.

• FaaS server is a backend server for features that a FaaS
product provides.

• End-user is a service application operating on an end-user’s
device. It can communicate with the service server and the
FaaS server. End-user can interact with the FaaS server
through FaaS’s library or API.

In this structure, the FaaS server cannot distinguish whether
a request from an end-user is a malicious impersonation or
legitimate access without the assistance of the service server.
Therefore, by furnishing the FaaS server with end-user infor-
mation obtained from the service server, it becomes possible
for the FaaS server to implement an end-user authentication
method, such as sessions or JSON Web Token (JWT) [11],
which can effectively identify and secure end-user information
against forgery, tampering, and identity spoofing.

III. END-USER AUTHENTICATION IN FAAS

Several companies providing FaaS have implemented their
own end-user authentication methods. However, despite their
implementations being similar, there is no unified description.
This lack of descriptions or guidelines about designing and im-
plementing end-user authentication methods can confuse FaaS
customers and impose unnecessary burdens on developers of
new FaaS products. Therefore, in this section, we propose a
standardized implementation guideline and terminologies of
authentication in FaaS based on their similarity.

The authentication process consists of two steps. First,
the FaaS server authenticates the service server to verify
the incoming requests. Then, FaaS entities establish end-user
authentication.

540

FaaS and Service Servers: A FaaS server communicates
with client applications from multiple services. Therefore,
the FaaS server should distinguish every API call from
which the service server has requested. Fig. 3 portrays an
authentication flow between the FaaS and service servers.
The service should conduct a service registration on the
FaaS server to use the FaaS product. If the registration is
completed, the FaaS server issues an API key. After this,
the service server includes the API key on its request,
and the FaaS server identifies whether the request from
the service server is legitimate by checking the key.

FaaS server and End-user: Upon successful registration
with the FaaS server, the service server gains the
authority to request an access token for a specific user.
The end-user utilizes the token when it calls the FaaS’s
API. In Fig. 4, steps 1 and 2 illustrate the process of
issuing an access token, and step 3 demonstrates the
subsequent usage of the token. The details for each step
are as follows:

1) Authentication Grant: When the service server deter-
mines to grant the end-user for accessing FaaS server,
it sends an access token request, including the end-user
ID, to the FaaS server. Generally, this step is derived
from the sign-in request of the end-user to the service
server.

2) Access Token Issue: The FaaS server issues an access
token for the end-user and responds with the access
key. Then, the service server transfers the key to the
end-user.

3) API Request with Access Token: The end-user includes
the token when making API calls to the FaaS server.
The FaaS server verifies the token and allows access
only for resources authorized to the requester.

IV. COMPARATIVE ANALYSIS

The guideline consolidates the authentication protocols that
have already been employed by various FaaS products. Nev-
ertheless, certain implementation details, such as API-key or
access token implementation, are left to the discretion of
each individual company. While most of the implementation
methods may not matter to customers utilizing the product,
certain policies do have an impact. For example, in the
case of access tokens, whether the product uses JWT or a
session token does not significantly affect the customer, as
they are merely strings. However, the presence of a token
expiration time is of significance to customers, as a token
with a finite expiration requires the service server to reissue
it periodically. In this section, we illustrate examples of both
similarities and dissimilarities in implementations that have a
substantial impact on customers, using specific FaaS products
as case studies: Sendbird, Twilio Conversation, Stream Chat
Messaging and Stipop. Additionally, we summarize the major
technical differences in Table I.
Sendbird [12] Sendbird Chat is a FaaS platform that inte-

grates chatting, video calling, live streaming, and other
functionalities into mobile applications and websites.

Twilio [13] Twilio is a communication platform known for
its SMS and voice call API. Additionally, it provides a
conversation and programmable video SDK, which shares
similarities with the Sendbird platform.

Stream [14] Stream provides chatting and activity feed fea-
tures as its core offering. Additionally, it offers video
calling and streaming functionalities as beta services.

Stipop [15] Stipop provides image stickers, GIFs and other
visual content that can be facilitated to contents in appli-
cations. It provides APIs to access sticker images and a
dedicated SDK tailored for messaging and social media
applications.

A. Service Registration

The service registration process is commonly carried out
through the developer dashboard website provided by each
FaaS product. FaaS customers sign up to the dashboard
and perform the feature management tasks, including service
registration and API-key issue.

B. API-key

FaaS products have implemented the concept of the API-key
differently from one another. The simplest approach, adopted
by Stipop, involves generating an immutable identifier string.
However, this method is vulnerable in case the API-key gets
leaked. In contrast, Sendbird Chat and Twilio Conversation
offer an alternative solution with revokable API-keys, which
can be generated multiple times and revoked. Moreover,
Stream utilizes JWT tokens that can be generated using a
secret API key, serving as tokens to authenticate the service
server. The use of JWT specifications allows for the inclusion
of an expiration time, enhancing security in the authentication
process.

C. API-key attach location in HTTP Header

The HTTP header key for the API key also varies across
FaaS products. For new FaaS products, it is advisable to
avoid using keys that are already in use, as listed in Table I.
Moreover, Stream utilizes the ‘AUTHORIZATION’ key as the
request header field for the OAuth 2.0 Bearer token [16].
Therefore, Stream advises removing the ‘Bearer’ prefix string,
which may be automatically inserted by some HTTP libraries
[5].

D. Access Token

There are two types of access token implementations: per-
sistent and expirable. The expirable token has a finite expira-
tion period, unlike the persistent token, which does not expire.
Twilio exclusively employs an expirable token, with a default
TTL (Time To Live) set to 3600 seconds and a maximum
validity period of 24 hours. On the other hand, Sendbird
provides the flexibility for customers to choose between these
options. They label the access token as ‘Auth Token’ and fur-
ther categorize the persistent token as the ‘Access Token’ and
the expirable token as the ‘Session Token’. Meanwhile, Stipop
has not made their documentation about the authentication

541

TABLE I: The differences of FaaS products in authentication

API-key API-key attach location
in HTTP Header Access Token

Sendbird Master API Token(immutable)
or Secondary API Token(revokable) Api-Token Access Token(persistent)

or Session Token(expirable)

Twilio Auth Token(immutable)
or API key/secret pair(revokable) TWILIO API KEY Access Token(expirable)

Stream Token(revokable and expirable) AUTHORIZATION Token(JWT, expirable)

Stipop API key(immutable) api key Not opened to public

grant publicly accessible; however, the documentation for the
API Request with Access Token is available. It is presumed that
the authentication method is exclusively accessible to private
customers.

Lastly, Stream adopts a slightly different approach in cre-
ating an access token for the end-user. In contrast to our
guideline, where the FaaS server is requested to issue an access
token by service servers, Stream allows the service server to
generate a JWT access key containing the end-user’s identifier
and encrypts it using the secret API-key.

V. CONCLUSION

The FaaS market is experiencing rapid growth, exemplified
by Sendbird, one of the largest FaaS companies, securing $100
million in series C funding [17]. This rapid expansion sug-
gests the likelihood of more FaaS products being introduced
in the future. As a result, we anticipate that an increasing
number of developers will engage with one or more FaaS
products in the future. Among other factors, the necessity
of end-user authentication in certain FaaS business models
inevitably contributes to the significant burden faced by FaaS
developers when developing individual authentication methods
for each product.

Therefore, we have suggested a guideline for end-user
authentication protocol for FaaS products. The unified guide-
line facilitates the development of secure FaaS products for
emerging companies, streamlining the process and enabling
faster and easier creation of robust FaaS solutions. Moreover,
developers creating new FaaS products can save significant
time by adopting standardized authentication methods, elim-
inating the need to analyze other companies’ authentication
processes and create accompanying documentation.

REFERENCES

[1] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: An overview,”
in Cloud Computing, M. G. Jaatun, G. Zhao, and C. Rong, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 626–631.

[2] “Sendbird Chat/Platform API Docs,” 2023, [last accessed Jul.
2023]. [Online]. Available: https://sendbird.com/docs/chat/v3/platform-
api/overview

[3] “Sendbird Docs/UIKit Docs,” 2023, [last accessed Jul. 2023]. [Online].
Available: https://sendbird.com/docs/uikit

[4] “Sendbird Docs/Chat/Platform API/Create a user/Access token
vs Session token,” [last accessed Aug. 2023]. [Online].
Available: https://sendbird.com/docs/chat/platform-api/v3/user/creating-
users/create-a-user#2-access-token-vs-session-token

[5] “Stream Docs/Chat/Authentication,” 2023, [last accessed Aug. 2023].
[Online]. Available: https://getstream.io/chat/docs/rest/#authentication

[6] “Onymos API Docs/,” [last accessed Aug. 2023]. [Online]. Available:
https://onymos.com/api/onymos-chat-functions/

[7] “IaaS vs. PaaS vs. SaaS - Red Hat Technology Topics,” 2022, [last
accessed Jul. 2023]. [Online]. Available: https://www.redhat.com/en/
topics/cloud-computing/iaas-vs-paas-vs-saas

[8] C. M. Mohammed and S. R. Zeebaree, “Sufficient Comparison
Among Cloud Computing Services: IaaS, PaaS, and SaaS: A Review,”
International Journal of Science and Business, vol. 5, no. 2, pp.
17–30, 2021. [Online]. Available: https://ideas.repec.org/a/aif/journl/
v5y2021i2p17-30.html

[9] “Slack - Features/Messaging,” [last accessed Aug. 2023]. [Online].
Available: https://slack.com/team-chat

[10] “Sendbird Docs/Chat,” [last accessed Aug. 2023]. [Online]. Available:
https://sendbird.com/docs/chat

[11] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt),” Tech.
Rep., 2015.

[12] “Sendbird,” https://sendbird.com, [last accessed Aug. 2023].
[13] “Twilio,” https://www.twilio.com, [last accessed Aug. 2023].
[14] “Stream,” https://getstream.io, [last accessed Aug. 2023].
[15] “Stipop,” https://stipop.io, [last accessed Aug. 2023].
[16] M. B. Jones and D. Hardt, “The OAuth 2.0 Authorization Framework:

Bearer Token Usage,” RFC 6750, Oct. 2012. [Online]. Available:
https://www.rfc-editor.org/info/rfc6750

[17] I. Lunden, “Sendbird raises $100M at a $1B+ valuation,
says 150M+ users now interact using its chat and video
APIs,” 2021, [last accessed Aug. 2023]. [Online]. Avail-
able: https://techcrunch.com/2021/04/06/sendbird-raises-100m-at-a-1b-
valuation-says-150m-users-now-interact-using-its-chat-and-video-apis/

542

