
Experimental Analysis of the Recent Key Recovery
Protocol with respect to Commitment Schemes

Seongbong Choi, Yongseok Son, Jeongyeup Paek, and Hyung Tae Lee
School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea

{welq2st, sysganda, jpaek, hyungtaelee}@cau.ac.kr

Abstract—Recently, Kim et al. proposed a key recovery proto-
col for (t, n)-threshold ECDSA schemes that enables a user who
lost his secret share to recover with the aid of other t users among
n users [1]. In their protocol, a commitment scheme was em-
ployed to commit to messages, but they provided implementation
results of their protocol by employing the Feldman commitment
scheme only. In this paper, we examine the efficiency of their
protocol with respect to commitment schemes by implementing
them. More precisely, we implement the protocol by employing
hash-based and Pedersen commitment schemes each as well
as the Feldman commitment scheme. Our experimental results
show that the hash-based commitment scheme provides the most
efficient protocol than other commitment schemes. For example,
when t = 3 with 128-bit security, the protocol with the hash-based
commitment requires 0.485 ms in total for all computations, while
the protocols with Feldman and Pedersen commitment schemes
take 7.713 ms and 15.228 ms in total, which improve by factors
of about 15.90 and 31.40, respectively.

Index Terms—Key recovery protocol, commitment schemes,
hash-based commitment, Pedersen commitment, threshold
ECDSA

I. INTRODUCTION

A (t, n)-threshold ECDSA scheme allows to distribute se-
cret shares of the signing key to n parties and generate a valid
signature when at least t parties join the signing procedure.
It enables the secret key owner to distribute and store its
share securely. Recently, due to powerful application scenarios
in Blockchain, there have been proposed various threshold
ECDSA schemes [2]–[12] for the secure key management.
However, despite its advantages, it remains a possible security
issue in practice if secret shares are lost or malicious users
capture other parties’ secret shares.

To handle this issue, proactive threshold signature schemes
were proposed [13], [14]. Unlike traditional threshold signa-
ture schemes, proactive threshold signature schemes introduce
additional protocols, refresh and recovery protocols. On the
one hand, in a key refresh protocol, secret shares of entire
parties are updated to new values without changing the cor-
responding secret and public keys of a group. This feature
makes the adversary harder to reconstruct the secret key. On
the other hand, in a recovery protocol, it allows to re-generate
a secret share of a user who lost it. To that end, t other parties

This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No.
2022R1A4A5034130), and also by the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2023-RS-2022-00156353) supervised by the IITP (Institute for
Information Communications Technology Planning Evaluation). H. T. Lee
is the corresponding author.

jointly participate in the protocol. However, secret shares of
users participating in the protocol are also updated to other
values, so it causes computational overheads.

Recently, there were several studies for designing efficient
key recovery protocols for threshold ECDSA schemes. In [15],
Bae et al. presented a key recovery protocol for thresh-
old ECDSA schemes, but their protocol focused on (1, 3)-
threshold ECDSA schemes only. Furthermore, at the end of
executing the recovery protocol, all of the shares are replaced
with other values, thus it also occurs additional computational
overheads.

Later, Kim et al. [1] proposed a key recovery protocol
for (t, n)-threshold ECDSA schemes. Compared to other key
recovery protocols, their protocol does not make computa-
tional overheads since it maintains secret shares of all users.
In the protocol, users who join the protocol with their own
secret shares to help the recovery of other user’s secret
share, first select random values and share them each other
through the secure channel. In this process, they exploit a
commitment scheme to commit to selected random values.
Then, by following the pre-determined computation rule, they
generate masking values for their secret shares so that those
are cancelled in the end. Finally, the authors of [1] provided
implementation results of their proposed protocol by employ-
ing the Feldman commitment scheme [16].

In this paper, we re-evaluate the efficiency of Kim et al.’s
protocol by substituting the Feldman commitment scheme for
two well-known commitment schemes in the implementation:
One is the hash-based commitment scheme and the other is the
Pedersen commitment scheme. We point out that the Feldman
commitment scheme does not achieve the requirement of the
commitment scheme. In Kim et al.’s protocol, it is assumed
that the exploited commitment scheme satisfies binding and
hiding properties. However, the Feldman commitment scheme
cannot satisfy the hiding property. On the other hand, the
hash-based construction and Pedersen commitment schemes
satisfy binding and hiding properties. Our implementation
results show that the hash-based commitment scheme provides
the most efficient experimental result, compared to other two
commitment schemes. For example, when t = 3 with 128-bit
security, Kim et al.’s key recovery protocol with the hash-based
commitment requires 0.485 ms in total for all computations,
whereas the protocols with Feldman and Pedersen commit-
ment schemes take 7.713 ms and 15.228 ms in total, which
improve by factors of about 15.90 and 31.40, respectively.

669979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

Outline of the Paper. In Section II, we review a crypto-
graphic assumption, definitions of commitment scheme, and
its concrete instantiations that will be utilized throughout the
paper. Section III recalls Kim et al.’s key recovery protocol.
We provide experimental results of their key recovery protocol
with respect to commitment schemes in Section IV.

II. PRELIMINARIES

In this section, we briefly review commitment schemes and
introduce cryptographic assumptions required to achieve their
security properties.

Notations. Throughout the paper, x ∈R X denotes that x
is sampled from a set X uniformly at random. We denote by
a ← A that a is an outcome of algorithm A. The concatenation
of two strings a and b is denoted by a∥b.

A. Cryptographic Assumptions

In this subsection, we first look at the formal definition
of the discrete logarithm (DL) assumption which will be
required to guarantee the security properties of Feldman and
Pedersen commitment schemes. Then, we introduce a collision
resistant property of hash functions required for hash-based
commitment schemes.

Definition 1 (Discrete Logarithm Assumption). Let G be an
additive cyclic group of prime order q = q(λ) with the security
parameter λ. Let P be a random generator of G. The discrete
logarithm problem (DLP) with respect to (G, P) is to find
a ∈ Zq such that Q = aP where Q is an element of G.

We say that the discrete logarithm (DL) assumption holds
if for any probabilistic polynomial-time (PPT) adversary A

Pr[A(P,Q) = a | a ∈R Zq and Q = aP]

is negligible in the security parameter λ.

Definition 2 (Collision Resistance). A hash function H :
{0, 1}∗ → {0, 1}ℓ with ℓ = ℓ(λ) for the security parameter λ
is collision-resistant if for any PPT adversary A

Pr[(x, x′) ← A such that H(x) = H(x′) and x ̸= x′]

is negligible in λ.

B. Commitment Schemes

Now, we first provide the definition of commitment schemes
and formally define two properties of the security for commit-
ment schemes. Next, we review three commitment schemes,
Feldman, Pedersen, and hash-based commitment schemes.

Definition 3 (Commitment scheme). A commitment scheme
consists of three polynomial time algorithms (KeyGen,
Commit, Reveal), which are defined as follows:

• ck ← KeyGen(1λ): It takes a security parameter λ as an
input and returns a commitment key ck.
Throughout the paper, we denote a message space, a
randomness space, and a commitment space by Mck,
Rck, and Cck, respectively, and it is assumed that those
information are included in ck.

• C ← Commit(ck, u; r): Given the commitment key ck, a
value u ∈ Mck, and a randomness r ∈ Rck, it outputs
a commitment C ∈ Cck.

• 1/⊥ ← Reveal(ck, C, u; r): Given the commitment
key ck, the commitment C ∈ Cck, the value u ∈ Mck, and
the randomness r ∈ Rck, it returns 1 indicating C = C ′

or ⊥ indicating C ̸= C ′ where C ′ ← Commit(ck, u; r).

For simplicity, we omit ck and the randomness r if no
confusions arise.

The commitment scheme should satisfy the following two
properties.

Definition 4 (Hiding property). A commitment scheme is hid-
ing if for all interactive algorithms A, the following probability
is negligible in the security parameter λ :
Pr

β = β∗

ck ← KeyGen(1λ); (b0, b1) ← A(ck);
β ∈R {0, 1}; r ∈R Rck;
B ← Commit(bβ ; r);β

∗ ← A(ck,B)

− 1

2

.

Definition 5 (Binding property). A commitment scheme is
binding if for all interactive algorithms A, the following
probability is negligible in the security parameter λ :

Pr

Commit(b0; r0) = Commit(b1; r1)
and

b0 ̸= b1

ck ← KeyGen(1λ);�
b0,b1
r0,r1

← A(ck)

 .

In the above definitions for hiding and binding properties
of commitment schemes, if an adversary A is restricted to be
a PPT algorithm, then we say that the commitment scheme is
computationally hiding/binding. On the other hand, if there is
no restriction on A, then we say that the commitment scheme
is unconditionally hiding/binding.

Now, we review three main commitment schemes that will
be utilized in our implementation.

Feldman Commitment Scheme [16]. The Feldman commit-
ment scheme consists of three polynomial-time algorithms
(Fel.KeyGen, Fel.Commit, Fel.Reveal).

• ck ← Fel.KeyGen(1λ) : Given a security parameter λ,
1) Generate a cyclic group G of prime order q = q(λ).
2) Select a random generator P of G.
3) Output a commitment key ck = (P,G, q).

• C ← Fel.Commit(u) : Given a message u ∈ Zq ,
1) Compute C = uP .
2) Output a commitment C to a message u.

• 1/⊥ ← Fel.Reveal(C, u) : Given a commitment C and a
message u,

1) Compute C ′ = uP .
2) Check whether C ′ = C. If it holds, return 1.

Otherwise, return ⊥.
It is known that the Feldman commitment scheme is compu-
tationally binding under the DL assumption in G, but does not
achieve the hiding property.

670

Pedersen Commitment Scheme [17]. The Pedersen com-
mitment scheme consists of three polynomial-time algorithms
(Ped.KeyGen, Ped.Commit, Ped.Reveal).

• ck ← Ped.KeyGen(1λ) : Given a security parameter λ,
1) Generate a cyclic group G of prime order q = q(λ).
2) Select two random generators P and Q of G.
3) Output a commitment key ck = (P,Q,G, q).

• C ← Ped.Commit(u; r) : Given a message u ∈ Zq ,
1) Select a randomness r ∈R Zq .
2) Compute C = uP + rQ.
3) Output a commitment C to a message u.

• 1/⊥ ← Ped.Reveal(C, u, r) : Given a commitment C, a
message u and a randomness r,

1) Compute C ′ = uP + rQ.
2) Check whether C = C ′. If it holds, return 1.

Otherwise, return ⊥.
It is known that the Pedersen commitment scheme satisfies
computationally binding and unconditionally hiding properties
under the DL assumption in G and the assumption that the DL
of Q to the base P is unknown.

Hash-Based Commitment Scheme. The hash-based commit-
ment scheme consists of three polynomial-time algorithms
(Hash.KeyGen, Hash.Commit, Hash.Reveal).

• ck ← Hash.KeyGen(1λ) : Given a security parameter λ,
1) Generate a cryptographic hash function H : {0, 1}∗

→ {0, 1}ℓ for a parameter ℓ = ℓ(λ).
2) Output a commitment key ck = H.

• C ← Hash.Commit(u; r) : Given a message u ∈
{0, 1}∗,

1) Select a random r ∈R {0, 1}ℓ.
2) Compute C = H(u∥r).
3) Output a commitment C to a message u.

• 1/⊥ ← Hash.Reveal(C, u, r) : Given a commitment C,
a message u, and a randomness r,

1) Compute C ′ = H(u∥r).
2) Check whether C ′ = C. If it holds, return 1.

Otherwise, return ⊥.
It is known that the hash-based commitment scheme is compu-
tationally hiding and computationally binding if the exploited
hash function is collision-resistant.

III. REVIEW OF KIM ET AL.’S KEY RECOVERY PROTOCOL

In this section, we review a key recovery protocol for a
(t, n)-threshold ECDSA, recently proposed by Kim et al. [1].
We assume that the party P1 lost his/her own secret share and
other at least t parties join the protocol to recover P1’s secret
share.

Kim et al.’s Key Recovery Protocol. Let G be the set
of parties that participate in the protocol. To simplify the

description, we assume that G = {2, 3, . . . , t + 1}. Kim et
al.’s key recovery protocol consists of four steps as below.

1) For each i ∈ G, Pi performs as follows: For each j ∈ G
and j ̸= i,

a) Choose a random element bij ∈R Z∗
q and a

randomness rij ∈R Rck.
b) Compute Bij by running Bij ← Commit(bij ; rij).
c) Send Bij to Pj .

2) For each i ∈ G, Pi sends (bij , rij) to Pj for revealing
Bij .

3) For each i ∈ G, Pi performs as follows: For each j ∈ G
and j ̸= i,

a) Run Reveal(Bij , bij , rij) to check whether Bij is
the commitment to bij . If the output is ⊥, abort.

b) Compute

si = ℓGi (1)ski +
∑

j∈G\{i}

(bij − bji),

where ℓGi (1) =
∏

j∈G\{i}
1− j

i− j
.

c) Send si to P1 through a secure channel.

4) P1 performs the following steps:
a) Compute sk′1 =

∑
i∈G si.

b) Check if

sk′1P = X1.

Abort if it does not hold.
c) Output sk′1.

We remark that Kim et al.’s protocol is secure against the
malicious adversary which can corrupt at most t − 1 parties,
assuming that the exploited secure channel is established by
a semantically secure encryption scheme, and the employed
commitment scheme satisfies hiding and binding properties.
Though the authors of [1] provided implementation results
by employing the Feldman commitment scheme, it does not
achieve the hiding property. So, we need to replace the
commitment schemes by other candidates that satisfy hiding
and binding properties.

IV. PERFORMANCE ANAYLSIS OF KIM ET AL.’S PROTOCOL
WITH RESPECT TO COMMITMENT SCHEMES

In this section, we evaluate the efficiency of Kim et al.’s
protocol for several commitment schemes under various pa-
rameter settings.

A. Experimental Environments

In our implementation, the source codes were written
in C++ and compiled using the g++ 9.4.0 compiler. We
used the OpenSSL library [18] for using the symmetric key
encryption, AES-256-GCM, to establish private peer-to-peer
channels, for implementing arithmetic of large numbers and
elliptic curve operations in the protocols, and for using hash

671

TABLE I
OPENSSL SHA3 PERFORMANCE COMPARISON FOR 10,000 TIMES. (UNIT: MS)

Hash Funtions
ℓ SHA3-224 SHA3-256 SHA3-384 SHA3-512

64 4.362 4.120 4.043 4.551
128 4.501 4.222 6.982 6.919
256 8.023 7.563 10.615 13.577
512 12.226 11.942 14.653 22.013

1024 23.677 23.366 28.994 42.097
2048 44.009 46.257 57.124 81.108
4096 75.286 79.550 102.839 144.362

TABLE II
OPERATION TIMES ON CURVES FOR 1,000 TIMES. (UNIT: MS)

Curves
Operation SECP224K1 SECP256K1 SECP384R1 SECP521R1

Scalar Multiplication 266.417 301.582 692.660 115.173
Addition 1.133 1.185 1.767 2.198

functions, SHA3-224, 256, 384, and 512, to realize a hash-
based commitment scheme. However, we do not implement
data transmission on the network. Instead, we store and read
them in memory once the party’s computation at each step
ends and begins, respectively. We have tested the programs
on the modern PC with Intel(R) Core(TM) i7-11700 CPU at
2.50 GHz and 32 GB RAM. The operating system for our
experiments was Ubuntu 20.04 LTS on Windows Subsystem
for Linux (WSL) on Windows 11 pro 64 bits.

B. Experimental Results

Before presenting our experimental results, we first inves-
tigate the performance of SHA3 hash functions and elliptic
curve operations in Tables I and II, respectively, under various
parameter settings. Table I shows the performance comparison
of SHA3-224, 256, 384, and 512, provided by OpenSSL
library [18]. In Table I, each hash function takes a randomly
sampled string of ℓ-byte length as input and computes the hash
digest. The numbers in the table are all running times of 10,000
tests for each parameter and all hash functions take the same
string as input in each test. Table I shows that hash functions,
which output longer hash digests, take less time to execute if
the length ℓ of the string is less than or equal to 1,024 bytes.
For example, when ℓ = 64, SHA3-224 requires 4.362 ms
while SHA3-256 and SHA3-384 require 4.120 ms and 4.043
ms, respectively. Furthermore, when ℓ = 128, SHA3-384 takes
6.982 ms while SHA3-512 takes 6.919 ms. This affects our
experimental results for Kim et al.’s key recovery protocol
because elements from Zq are smaller than 1,024 bytes.

Table II shows computation times of SECP224K1,
SECP256K1, SECP384R1, and SECP521R1. The numbers
in the table are all running times of 1,000 tests for each
parameter. According to our experimental results, it shows an

interesting feature that SECP521R1 is faster than other curves.
This also affects our experimental results.

Now, we provide experimental results of Kim et al.’s key
recovery protocol with Feldman, Pedersen, and hash-based
commitment schemes for various parameter settings. Each ex-
periment was conducted 100 times and the results in Table III
and IV are averages of those running times. In Table III, we
use SECP224K1, SECP256K1, SECP384R1, and SECP521R1
curves for 112, 128, 196, and 256 bits security, respectively,
where SECP224K1 and SECP256K1 are specific Koblitz
curves defined by Standards for Efficient Cryptography Group
[19], while SECP384R1 and SECP521R1 are Weierstrass
curves [20], to implement Feldman and Pedersen commitment
schemes. We also exploit SHA3-224, 256, 384, and 512 [21]
for 112, 128, 196, and 256 bits security, respectively, to realize
the hash-based commitment scheme.

Table III demonstrates computational running times of Kim
et al.’s key recovery protocol with respect to commitment
schemes and security levels. It shows that the protocol with the
hash-based commitment scheme outperforms that with other
commitment schemes for all security levels since it does not
require operations over elliptic curves, which are relatively ex-
pensive. For example, when t = 1 and the security level is 128,
the protocol with the hash-based commitment scheme takes
0.358 ms in total for computations while the protocols with
Feldman and Pedersen commitment schemes take 1.53 ms and
2.741 ms in total, which improve by factors of about 4.27 and
7.58, respectively. Compared with the Pedersen commitment
scheme, the Feldman commitment scheme is about 2 times
as efficient because it only requires one scalar multiplication
while the Pedersen commitment scheme requires two scalar
multiplications and one addition.

Table IV provides experimental results of Kim et al.’s key
recovery protocol with commitment schemes for several t with

672

TABLE III
EXPERIMENTAL RESULTS OF KIM ET AL’S PROTOCOL FOR SMALL t AND VARIOUS SECURITY LEVELS AND COMMITMENT SCHEMES. (UNIT: MS)

t Security level
Feldman [16] Pedersen [17] Hash function

Step 1) Step 3) Step 4) Step 1) Step 3) Step 4) Step 1) Step 3) Step 4)

1

112 0.553 0.547 0.265 1.226 1.216 0.299 0.012 0.022 0.276
128 0.622 0.609 0.299 1.234 1.210 0.297 0.012 0.028 0.318
192 1.483 1.461 0.707 2.775 2.745 0.678 0.015 0.041 0.717
256 0.267 0.283 0.121 0.706 0.715 0.119 0.013 0.052 0.128

2

112 1.721 1.695 0.276 3.667 3.619 0.307 0.029 0.054 0.291
128 1.909 1.858 0.303 3.603 3.577 0.295 0.027 0.069 0.322
192 4.380 4.293 0.706 8.605 8.329 0.680 0.030 0.098 0.694
256 0.770 0.797 0.119 2.139 2.127 0.121 0.031 0.142 0.135

3

112 3.348 3.316 0.278 7.771 7.653 0.315 0.052 0.098 0.281
128 3.705 3.698 0.310 7.302 7.623 0.303 0.047 0.126 0.312
192 8.640 8.417 0.685 17.004 16.915 0.692 0.053 0.192 0.697
256 1.554 1.620 0.123 4.272 4.295 0.124 0.057 0.269 0.131

TABLE IV
EXPERIMENTAL RESULTS OF KIM ET AL.’S PROTOCOL FOR VARIOUS t AT 128-BIT SECURITY (UNIT: MS)

128-bit security (SECP256K1, SHA3-256)

t
Feldman Pedersen Hash function

Step 1) Step 3) Step 4) Step 1) Step 3) Step 4) Step 1) Step 3) Step 4)

3 3.705 3.698 0.310 7.302 7.623 0.303 0.047 0.126 0.312
6 13.100 13.111 0.312 25.778 25.724 0.304 0.158 0.435 0.327
9 28.134 27.766 0.319 54.494 43.190 0.313 0.330 0.907 0.323
12 49.049 48.211 0.313 95.378 93.660 0.309 0.559 1.629 0.345

128-bit security. In Table IV, the hash-based commitment
scheme gives the highest performance for the same reason
as aforementioned. For example, when t = 12, the protocol
with the hash-based commitment scheme requires 2.533 ms
in total for computation, while the protocols with Feldman
and Pedersen commitment schemes require 97.573 ms and
189.347 ms in total, which improve by factors of about 38.52
and 74.75, respectively.

V. CONCLUSION

In this paper, we provided the performance analysis of a re-
cent key recovery protocol proposed by Kim et al., with respect
to commitment schemes. More specifically, we compare the
efficiency of the protocols with Feldman, Pedersen, and hash-
based commitment schemes. From our experimental results,
we confirm that the protocol with the hash-based commitment
scheme provides the most efficient result.

REFERENCES

[1] M. Kim, S. Cho, S. Choi, Y.-S. Cho, S. Kim, and H. T. Lee, “A key
recovery protocol for multiparty threshold ecdsa schemes,” IEEE Access,
vol. 10, pp. 133 206–133 218, 2022.

[2] R. Gennaro, S. Goldfeder, and A. Narayanan, “Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet security,”
in Applied Cryptography and Network Security - 14th International
Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings,
ser. Lecture Notes in Computer Science, M. Manulis, A. Sadeghi, and
S. A. Schneider, Eds., vol. 9696. Springer, 2016, pp. 156–174.

[3] Y. Lindell, “Fast secure two-party ECDSA signing,” in Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part II, ser. Lecture Notes in Computer Science, J. Katz and H. Shacham,
Eds., vol. 10402. Springer, 2017, pp. 613–644.

[4] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ECDSA with
fast trustless setup,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, D. Lie, M. Mannan, M. Backes, and
X. Wang, Eds. ACM, 2018, pp. 1179–1194.

[5] Y. Lindell and A. Nof, “Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October 15-
19, 2018, D. Lie, M. Mannan, M. Backes, and X. Wang, Eds. ACM,
2018, pp. 1837–1854.

[6] J. Doerner, Y. Kondi, E. Lee, and A. shelat, “Secure two-party threshold
ECDSA from ECDSA assumptions,” in 2018 IEEE Symposium on
Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA. IEEE Computer Society, 2018, pp. 980–
997.

[7] ——, “Threshold ECDSA from ECDSA assumptions: The multiparty
case,” in 2019 IEEE Symposium on Security and Privacy, SP 2019, San
Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 1051–1066.

[8] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker,
“Two-party ECDSA from hash proof systems and efficient instanti-
ations,” in Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2019, Proceedings, Part III, ser. Lecture Notes in Computer
Science, A. Boldyreva and D. Micciancio, Eds., vol. 11694. Springer,
2019, pp. 191–221.

[9] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled,
“UC non-interactive, proactive, threshold ECDSA with identifiable
aborts,” in CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020,

673

J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. ACM, 2020, pp. 1769–
1787.

[10] H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui, “Efficient online-
friendly two-party ECDSA signature,” in CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna,
and E. Shi, Eds. ACM, 2021, pp. 558–573.

[11] Y. Deng, S. Ma, X. Zhang, H. Wang, X. Song, and X. Xie, “Promise
∑

-
protocol: How to construct efficient threshold ECDSA from encryptions
based on class groups,” in Advances in Cryptology - ASIACRYPT
2021 - 27th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 6-10,
2021, Proceedings, Part IV, ser. Lecture Notes in Computer Science,
M. Tibouchi and H. Wang, Eds., vol. 13093. Springer, 2021, pp. 557–
586.

[12] I. Damgård, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B.
Østergaard, “Fast threshold ECDSA with honest majority,” J. Comput.
Secur., vol. 30, no. 1, pp. 167–196, 2022.

[13] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in Advances in Cryptol-
ogy - CRYPTO ’95, 15th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 27-31, 1995, Proceedings, ser.
Lecture Notes in Computer Science, D. Coppersmith, Ed., vol. 963.
Springer, 1995, pp. 339–352.

[14] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung,
“Proactive public key and signature systems,” in CCS ’97, Proceedings
of the 4th ACM Conference on Computer and Communications Security,
Zurich, Switzerland, April 1-4, 1997, R. Graveman, P. A. Janson,
C. Neuman, and L. Gong, Eds. ACM, 1997, pp. 100–110.

[15] K. Bae, J. Park, and J. Ryou, “Secure recovery protocol of (1,3)
distributed key share with trustless setup for asset management in
blockchain,” Journal of the Korea Institute of Information Security &
Cryptology, vol. 31, no. 5, pp. 863–874, 2021.

[16] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer
Science, Los Angeles, California, USA, 27-29 October 1987. IEEE
Computer Society, 1987, pp. 427–437.

[17] T. P. Pedersen, “A threshold cryptosystem without a trusted party
(extended abstract),” in Advances in Cryptology - EUROCRYPT ’91,
Workshop on the Theory and Application of of Cryptographic Tech-
niques, Brighton, UK, April 8-11, 1991, Proceedings, ser. Lecture Notes
in Computer Science, D. W. Davies, Ed., vol. 547. Springer, 1991, pp.
522–526.

[18] “OpenSSL–Cryptography and SSL/TLS Toolkit, Version 1.1.1s,” Avail-
able at https://www.openssl.org, 2022, online; Accessed 1 Nov 2022.

[19] “SEC 2: Recommended Elliptic Curve Domain Parameters, Version 2.0,”
Available at https://www.secg.org/sec2-v2.pdf, 2010, online; Accessed
15 Jul 2022.

[20] “Recommendations for Discrete Logarithm-based Cryptog-
raphy: Elliptic Curve Domain Parameters,” Available at
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
186.pdf, 2023, online; Accessed 16 Aug 2023.

[21] M. J. Dworkin, “Sha-3 standard: Permutation-based
hash and extendable-output functions,” Available at
https://doi.org/10.6028/NIST.FIPS.202, 2015.

674

