
Survey of Distributed File Systems: Concepts,
Implementations, and Challenges

Kiet Tuan Pham, Sangjin Lee, Lan Anh Nguyen, Jeongyeup Paek, and Yongseok Son
Department of Computer Science and Engineering, Chung-Ang University

Abstract—Modern computing now relies heavily on Distributed
File Systems (DFS), which make it possible to store, manage,
and retrieve data across remote contexts in an effective manner.
Therefore, it is essential to comprehend the DFS environment
to optimize data management and storage solutions. We explore
DFS in this thorough overview work, discussing its foundational
ideas, well-known applications, related difficulties, and potential
future research avenues.

Index Terms—Distributed File Systems, cloud computing, data-
intensive computing

I. INTRODUCTION

The handling and storage of large volumes of information
have become crucial to the success of organizations, research,
and technical developments in today’s era of data-driven com-
puting. In order to meet the demands of dispersed computing
environments, the need for high availability, and the issues
provided by the exponential growth of data, DFS have become
an essential solution.

The idea of a standard file system is expanded by a DFS
to numerous networked nodes, most of the time dispersed
over various distinct location, rather than just single machine.
This extension makes it possible to efficiently organize, store,
retrieve, and share data in situations when the volume of data
is too great for a single system to manage or where data
accessibility and redundancy are crucial.

The significance of DFS is underscored by their central
role in modern computing ecosystems. In an era where data
generation is incessant – from scientific simulations and sensor
networks to social media interactions and business transactions
– traditional storage models often fall short. DFS offer an in-
novative approach that addresses the challenges of scalability,
fault tolerance, and data locality [1].

This survey paper aims to delve deeper into the realm
of DFS. It will explore the foundational concepts, describe
DFS taxanomy, discuss notable implementations, address chal-
lenges related to data security, consistency models, and perfor-
mance optimization, and highlight emerging trends and future
directions in the field.

II. KEY CONCEPTS OF DFS

DFS introduce several fundamental concepts that underpin
their functionality. They are: transparency, scalability, perfor-
mance, redundancy, consistency, security and fault tolerance.
[1]

A. Transparency

DFS provide location, access, migration, relocation and
replication transparency, making it possible for users and
programs to access files without being aware of where they are
physically stored. This improves user experience by making
data access and administration simpler.

B. Scalability and Expansion

Scalability is one of DFS’s main benefits. By adding addi-
tional storage nodes, these systems may expand horizontally
and easily handle increasing data volumes, which is suitable
for big servers.

DFS are made to enable organisations to easily increase
storage capacity by introducing additional nodes as their
data needs increase. With this scalability, the system can
grow to handle rising data quantities without compromising
performance.

C. Data Replication and Redundancy

DFS employs data replication techniques to ensure fault
tolerance and data availability. Replicating data across multiple
nodes enhances reliability and reduces the risk of data loss.

DFS often uses methods like data replication or erasure
coding to reduce the risk of data loss caused by network or
hardware problems. These processes guarantee a high level of
data availability and dependability.

D. Consistency and Coherency

It is difficult to maintain data consistency in a distributed
environment. Therefore, DFS use a number of protocols and
techniques to guarantee that data copies stay coherent and
preserve data integrity.

The majority of DFS employ checksum to verify consis-
tency by evaluating the data after transmission over communi-
cation network. Additionally, caching and replication are also
crucial to DFS, especially when they are intended to run over
wide-area networks. There are a number of different methods,
including server-side replication and client-side caching. Data
object replication and metadata replication are the two forms
of data that need be taken into account for replication [4]. All
DFS include a means to guarantee the availability and recover-
ability of metadata and metadata, such as a backup metadata
server and a metadata snapshot with transaction logs.

782979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

E. Security
Some of the most important security difficulties in DFS that

need to be taken into account are issues with access control
and authentication. Most DFS include security using contem-
porary security methods including privacy, authentication, and
authorisation. In contrast, some DFS only rely on the mutual
confidence between all nodes and clients [2].

F. Fault Tolerance
On object data, there are two methods for fault tolerance:

failure as exception and failure as norm. Systems that
use failure as exception will isolate the failing node or
restore the system to its previous state of regular operation.
In contrast, failure as norm systems use all types of data
replication and rereplication whenever the replication ratio
becomes dangerous. [1]

III. TAXONOMY OF DFS

Numerous elements influence the DFS to include the most
suited and appropriate file system [1]. Here is the taxonomy
list:

A. Architecture
There are 5 types of DFS with different architectures [6]:
• Client-server: A uniform view of the server’s local file

system is offered by this kind of server. Clients are able to
access the files kept on a server, enabling a heterogeneous
group of processes running on various computers and
operating systems to share a single file system. This
method has the benefit of being mostly independent of
local file systems. [1]

• Cluster-based: Cluster-based server is made up of a
single master and several chunk servers. The benefit is
that it is straightforward and enables a single master
to manage a few hundred chunk servers. Three key
architectural aspects of the Cluster-based DFS are often
taken into account during design: decoupled metadata and
data, reliable autonomous distributed object storage, and
dynamic distributed metadata management. [1]

• Symmetric: Peer-to-peer technology is the foundation of
symmetric file systems. It combines a key-based lookup
technique with a distributed hash table-based approach
for distributing data. All nodes in a symmetric file system
can grasp the disk structures since the clients also host
the metadata manager code.

• Asymmetric: In asymmetric file system, the file system
and the accompanying disk structures are maintained by
one or more specialized metadata managers.

• Parallel: Data blocks in parallel file systems are striped
over several storage devices on numerous storage servers.
All nodes can access the same files simultaneously thanks
to the provision of support for parallel programs, enabling
concurrent read and write capabilities. This crucial func-
tionality is supported by the majority of the existing DFS.

B. Processes
Most of the DFS enable stateful processes because stateless

design is challenging to implement. However, with a stateless
design, clients can fail and restart without interfering with the
operation of the system as a whole.

C. Communication
Since the DFS make the system independent from underly-

ing operating systems, networks, and transport protocols, most
of them employ the Remote Procedure Call (RPC) mode of
communication. TCP and UDP are the two communication
protocols to take into account in the RPC technique. The
majority of DFS use TCP. UDP, however, is also taken into
account for enhancing performance in a number of DFS.

D. Naming
Two widely used strategies are:
• Central metadata server: Decopuling metadata and data

increases file namespace performance and solves the syn-
chronization issue. However, the central metadata server
can become a performance bottleneck, particularly in
large-scale and high-concurrency scenarios. If the central
server fails or experiences issues, it can impact the entire
file system.

• Distributed metadata server: Distributed metadata
server can improve scalability, reduce single points of
failure, and enhance performance by allowing parallel
access to metadata across multiple nodes but ensuring
data integrity and avoiding conflicts become important
challenges.

E. Synchronization
Applications deployed on the DFS are designed with a va-

riety of locking mechanisms depending on their intended use.
The Write-once-read-many access strategy is necessary for
major usages. However, there are applications that demand the
Multiple-producer/single-consumer access paradigm, such
as search engines.

IV. NOTABLE DFS IMPLEMENTATIONS

Several DFS have gained prominence due to their innovative
designs and successful deployments provided in Table I:

• Google File System (GFS): The Google File System
introduced the concept of chunking large files into fixed-
size blocks, enabling efficient storage and retrieval. GFS’s
focus on high throughput and fault tolerance influenced
subsequent DFS designs. [7]

• Lustre: Lustre uses remote links to connect a compara-
tively few huge subtrees. The administrator can construct
a new subdirectory as a remote directory on a separate
metadata node from its parent. Then, in the new location,
all new files and folders under that new subfolder are
created. [2]

• Hadoop DFS (HDFS): HDFS, a cornerstone of the
Hadoop ecosystem, is designed for storing and processing
massive datasets. Its master-slave architecture and data

783

TABLE I
NOTABLE DISTRIBUTED FILE SYSTEM IMPLEMENTATIONS

FS Name Release
year Architecture Communication Naming Synchronization Consistency and

Replication

GFS 2003 Asymmetric RPC/TCP Central metadata
server

Write-once-readmany,
Multiple-producer/
single-consumer,

give locks on objects
to clients, using leases

Server-side replication,
Asynchronous replication,

checksum, relax consistency

Lustre 2003 Asymmetric Network
independence

Central metadata
server

Hybrid locking
mechanism, using leases

Server side replication,
Only metadata replication,

Client side caching, checksum

HDFS 2006 Asymmetric RPC/TCP
& UDP

Central metadata
server

Write-once-readmany,
give locks on objects

to clients, using leases

Server side replication,
Asynchronous replication,

checksum

iRODS 2006 Asymmetric TCP Central metadata
server

Write-once-readmany,
Multiple-producer/
single-consumer,

give locks on objects
to clients

Server side replication,
Only metadata replication,

Client side caching, checksum

Ceph 2007 Symmetric RPC/TCP
& UDP

Distributed metadata
server

Multiple-producer/
multiple-consumer,

locks on object

Server-side replication,
Asynchronous replication,

checksum, relax consistency

IPFS 2015 Symmetric RPC/TCP Distributed metadata
server

Multiple-producer/
multiple-consumer

Checksum, eventually
consistency

JuiceFS 2017 Symmetric RPC/TCP Distributed metadata
server

Multiple-producer/
multiple-consumer

Server-side replication,
Asynchronous replication,

checksum, eventually consistency

replication mechanisms contribute to its reliability and
fault tolerance. [4]

• Ceph: Ceph offers a unified storage solution encom-
passing object, block, and file storage. Its distributed
architecture and scalability make it suitable for a wide
range of applications, from cloud environments to high-
performance computing. [2]

• Integrated Rule-Oriented Data System (iRODS):
iRODS operates as a middleware layer that abstracts the
underlying storage systems and provides a consistent and
rule-based framework for managing data. It allows users
to define data management policies and automate data
workflows based on these rules. [5]

• InterPlanetary File System (IPFS): IPFS is based on a
content-addressable storage model, where each piece of
content is assigned a unique hash based on its content.
This hash becomes its address on the network, which
results in content can be retrieved by referencing its
hash rather than a specific location, allowing for efficient
distribution and retrieval of data.

V. CHALLENGES AND FUTURE DIRECTIONS

DFS face several challenges that drive ongoing research and
development:

• Data Security and Privacy: Data security in DFS is
still a top priority. Researchers are investigating safe
data exchange protocols, access control systems, and
encryption technologies.

• Consistency Models: Maintaining strong data consis-
tency without sacrificing performance is a challenge.
Research is still ongoing to create innovative consistency

models that balance system performance with data in-
tegrity.

• Performance Optimization: Continuous research is con-
ducted in the areas of improving read and write speed,
cutting latency, and optimizing data placement. Data
placement regulations, load balancing algorithms, and
caching techniques are all intensively investigated.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea govern-
ment (MSIT), KIAT grant funded by the Korea Government
(MOTIE), and Korea Institute of Science and Technology
Information (KISTI). (No. NRF-2021R1C1C1010861, NRF-
2022R1A4A5034130, KIAT-P0012724) (Corresponding Au-
thor: Yongseok Son).

REFERENCES

[1] T. D. Thanh, S. Mohan, E. Choi, S. Kim, and P. Kim, “A Taxonomy
and Survey on Distributed File Systems,” in 2008 Fourth International
Conference on Networked Computing and Advanced Information Man-
agement, Sep. 2008, pp. 144–149. doi: 10.1109/NCM.2008.162.

[2] B. Depardon, G. L. Mahec, and C. Séguin, “Analysis of Six Distributed
File Systems”.

[3] “Comparative Analysis of Major DFS Architectures: GFS vs. Tectonic
vs. JuiceFS,” InfoQ.

[4] L. S. Rani, K. Sudhakar, and S. V. Kumar, “Distributed File Systems:
A Survey,” vol. 5, 2014.

[5] K. T. Pham, S. Lee, S. Cho, S. Kim, and Y. Son, “A Survey on
Data Management using Integrated Rule-Oriented Data System,” in
2022 13th International Conference on Information and Communica-
tion Technology Convergence (ICTC), Oct. 2022, pp. 1116–1118. doi:
10.1109/ICTC55196.2022.9953028.

[6] Y. Zhou, “Large Scale Distributed File Systems Survey”.
[7] P. Macko and J. Hennessey, “Survey of Distributed File Systems Design

Choices,” ACM Trans. Storage, vol. 18, no. 1, pp. 1–34, Feb. 2022, doi:
10.1145/3465405.

784

