
A Survey on File Defragmentation Techniques

on Modern Storage Systems

Sangjin Lee∗, Lan Anh Nguyen∗, Hyeongi Yeo∗, Sunggon Kim†, Sungrae Cho∗, and Yongseok Son∗

∗Department of Computer Science and Engineering, Chung-Ang University
†Department of Computer Science and Engineering, Seoul National University of Science and Technology

Abstract—File fragmentation is one of the widely studied
subjects for several decades due to its considerable degradation
on I/O operations. Also, it is a well-known problem in academia
that file fragmentation on HDD disks can extremely lower
the throughput and increase tail latency. However, even with
modern storage devices, such as flash-based SSDs and Optane
SSDs, the highly fragmented file systems shows considerable
underutilization of the storage device. Due to the different
nature of the modern storage systems in comparison to the
conventional disks, the fragmentation is often called ‘aging’.
This paper shows an overview of the aging of modern storage
devices and their fragmentation effects. Also shows the survey
of file fragmentation and its related literature, showing the
studies discovering fragmentation in file systems, and mitigation
techniques which suitable for modern storage devices.

Index Terms—Fragmentation, File system aging, Defragmen-
tation

I. INTRODUCTION

SSD device is commonly chosen as secondary memory

for storage sub-systems in I/O intensive systems due to their

high performance, resulting in taking the place of rotating

disks(HDDs). Especially, modern storage devices with multi-

ple internal buses and internal physical buffers (e.g., DRAM)

have been widely adopted for enterprise cloud storage or

cluster servers to support evergrowing data processing load in-

duced by data-intensive applications. The increasing through-

put and low latency by leveraging the internal parallelism of

modern storage devices have distinct advantages in comparison

to the conventional HDD disk, and the fragmentation of the

file system is known to be a solved or negligible problem.

However, SSD-backed storage sub-systems could suffer

from file fragmentation as the file operations(create, delete,

move, truncate). Even systems like a data center or a cloud

service that have to deal with a large amount of I/O operations

coming in between multiple applications can suffer from

high fragmentation due to the increased overhead driven by

scattered blocks all across non-contiguous block addresses. For

example, the EXT4 file system has its designated defragmen-

tation tool called e4defrag and it could improve the overall

performance of the file system by re-allocating the dispersed

blocks into contiguous block space. But the process is done

with a single thread, which could be adequate for a con-

ventional HDD device, hindering the overall defragmentation

process and making maintenance of the storage slow. Also,

the single I/O request from the application tends to amplify

into multiple small I/Os.

In this paper, we investigate studies on file fragmentation,

especially for modern storage devices(i.e., flash-based SSD,

Optane SSD). We present an existing defragmentation process

of the EXT4 file system to enhance further knowledge on file

defragmentation. Furthermore, we conduct a comparison in

terms of the reason for fragmentation and mitigation methods

for fragmentation. The rest of this paper is organized as

follows. Section II describes fragmentation on file systems

and SSDs. Section III presents the literature which explains

the cause of the fragmentation, and studies with proposals on

efficient defragmentation for modern storage systems. Finally,

Section IV concludes this article.

II. FILE FRAGMENTATION

If the file system has become highly fragmented, the logical

block device cannot handle I/O requests from the application

layer written on contiguous block space. The file system needs

to allocate a single file to the number of divided extents more

frequently than before, resulting in performance decrease.

A. Fragmentation on SSDs; aging

Fragmentation on traditional HDD disks leads to a persistent

drain on overall I/O performance [1] due to the inherent

mechanical seek time involved. To address the issue, regu-

lar defragmentation processes (i.e., e4defrag) are essential

for avoiding the suboptimal performance of HDD-equipped

subsystems.

In contrast, flash-based storage devices do not require

further mechanical seek operation. Therefore, it is generally

believed that file systems utilizing SSD devices do not ne-

cessitate additional defragmentation processes. But even on

flash-based SSDs, deterioration in logical block locality (non-

contiguous logical blocks) can still have a negative impact

on performance [2], [3]. Several papers show that non-HDD

storage devices suffer from various reasons. The amplifi-

cation of the I/O request, under-optimized kernel storage

I/O subsystem, recurring problem on mobile flash storage,

and even free-space(the unused disk blocks) aging can be

the reason for under-utilization while aging of modern SSD

devices [4]–[6]. Furthermore, as tools used to invoke aging

experimentally [7] are continuously being studied, file system

fragmentation(aging) in SSDs is an important problem.

Further knowledge and details could be found on Section III.

785979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

B. Defragmentation in EXT4 file system

Defragmentation reduces file fragmentation by gathering

dispersed blocks of a file and repositioning the file accordingly.

Especially, the EXT4 file system, which is in the mainline of

the Linux kernel, uses the defragmentation process specifi-

cally designed for itself(e.g., e4defrag). The e4defrag

is performed within both user space and kernel space. In

the user space, a single defragmentation worker collects the

target file-related information (e.g., inode) in the user space,

and determines the fragmentation state of the target file. If

the file is not fragmented, the defragmentation thread simply

skips the target file. But, if the file needs defragmentation

the worker creates a temporal file the same sized as the

target file (fragmented file) with contiguous blocks. Next, the

worker moves the blocks in the target file to the new file.

During the relocation of the target blocks of the new file,

the EXT4_IOC_MOVE_EXT() system call is employed. The

defragmentation worker read all the dispersed blocks to the

page cache and exchanges the block mapping information of

the files. Finally, unlink the target file and the new file. All of

the defragmentation processes in e4defrag are performed

by a single defragmentation worker, which was suitable for

traditional spinning disks.

III. DEFRAGMENTATION IN LITERATURES

In current literature, file system fragmentation(i.e.,aging)

and methods for mitigating the fragmentation (i.e., defragmen-

tation, anti-aging) are widely studied. In this section, we will

discuss studies related to fragmentation.

Hahn et al. [5] investigate and evaluate file fragmentation on

mobile flash devices. They proposed decoupled defragmenter,

janusd, which could support logical and physical defragmen-

tation. They observed that on mobile flash devices, the file

fragmentation can cause recurring problem, and also the file

fragmentation on mobile flash storage has a different influence

in comparison to traditional HDD disk.

The fragmented state of the file system, as referred to

by Conway et al. [2], is termed age. They analyze prior

works on file system aging as artificial aging technique, aging

measure, and age mitigation. The paper’s evaluation has been

done on various file systems, including EXT4, ZFS, XFS,

F2FS, Btrfs, and BetrFS. These evaluations are conducted by

using both micro and realistic workloads, specifically focusing

on the ”git pull” operation, and were carried out on both

HDD and SSD. As a result, they demonstrate that BetrFS

outperforms other file systems in terms of aging performance

within the workloads, and inspect key features of BetrFS aging

avoidance.

Conway et al. [6] investigate the prevalent assumption that,

increased space pressure contributes to the exacerbation of the

file system fragmentation. However, the study reveals a mere

20% reduction in subsequent read speeds on EXT4. By this

result, they indicate that the impact of free-space fragmentation

on read performance can be characterized as expediting the

aging process of the file system. As a discussion, the paper

seeks to stimulate discussion by challenging the commonly

held notion that disk fullness has a direct and significant

impact performance of file systems.

The paper [8] targets log-structured file system, especially

F2FS, and effectively eliminates file fragmentation by up to

98.5%. But the proposed scheme cannot remove fragmenta-

tion when valid blocks are scattered across the file offset.

They make up for weaknesses and propose an anti-aging

log-structured file system called AALFS [9] by leveraging

observations perceived by their previous research. The paper

extensively analyzes the performance degradation incurred by

file system fragmentation and kernel-level overheads with var-

ious storage types(i.e., HDD, Micro SD(flash storage), flash-

based SSD, and Optane SSD). The proposal re-arranges the

order of valid blocks to eliminate file fragmentation by using

file offset and inode number. As a result, AALFS achieves

x22.8 of I/O performance compared to the fragmented file

system equipped with an HDD disk. Experiments focused on

IOzone sequential read with various request sizes, and on real-

world database, SQLite.

Fragpicker [4] devises defragmentation scheme for modern

storage devices, such as Flash-based SSD, and Optane SSD.

They target the reduction of the amount of multiple I/Os

derived by a single I/O request, which is called request

splitting. The authors expose the issue that has been driven

by the current Linux kernel I/O call stack, which is not

capable of showing non-contiguous areas in terms of LBA

(Logical Block Address). Consequently, their observations

indicate that modern storage devices experience a deterioration

of the performance while management of I/O requests, is

driven by current Linux kernel I/O stack overhead. This leads

to an escalation of the interface overhead between the host

operating system and the storage device, resulting in impeding

the utilization of device resources.

As a follow-up study, the paper [10] additionally evaluate

FragPicker with YCSB workload-C. They set up RocksDB on

EXT4 equipped with Optane SSD. Their experiment shows

that the execution time of the defragmentation decreased to

16% of the e4defrag and reduce the performance degrada-

tion of co-running processes by 45%. They show a thorough

examination of the performance and fairness degradation re-

sulting from fragmentation, taking into account storage device

internals.

Zhu et al. [11] propose epdefrag to accelerate the overall de-

fragmentation process by exploiting SSD internal parallelism

by designing multiple threads to perform the defragmentation

process for multiple files in parallel. The epdefrag is based

on e4defrag but relocates files in a parallel manner, and

their experimental result shows x2.96 reduced execution time

compared with an existing scheme.

From the perspective of I/O control, the paper [12] by Park

and Eom studies the performance of a fragmented F2FS file

system among simultaneously running multiple applications.

Their experiment shows the fragmentation state causes an

increasing number of I/Os(splitting an I/O into smaller-sized

I/Os) hindering, to the conventional I/O control mechanisms

such as CFQ(Completly Fair Queuing), BFQ(Budget Fair

786

Queuing), and even with new I/O control model IOCost [13].

The authors have evaluated the negative influence on F2FS

while fragmented state and investigated homogeneous and

heterogeneous workloads with the defragmentation tool Frag-

picker. Finally, the paper has found that with the fragmentation

of F2FS, various I/O control mechanisms fail to achieve their

scheduling goals for different reasons, and can be relieved by

defragmentation on F2FS.

Kesavan et al. [14] reported that fragmentation of the free-

space in the file system can lower the write performance as

well as read operation. They believe that the file systems with

sub-block granular addressing can gather intra-block fragmen-

tation and can successfully prevent file system fragmentation.

By the hypothesis, the paper proposes a NetApp® WAFL®

file system that leverages the storage virtualization instances,

which can relocate PBA (Physical Block Address) efficiently

and quickly. However, due to the configurational difference

between file systems and WAFL, they provide inherent trade-

offs by historical context. As a result, they present storage

gardening techniques leveraging the FlexVol® virtualization

layer to remedy the fragmentation.

IV. CONCLUSION

Regarding the importance of fragmentation state on file

systems in the field of storage I/O performance, and to exploit

the computing power of ever-growing high-performance SSDs,

the file system fragmentation state and its mitigation are

actively researched by a number of literature.

In this survey, our main focus has been centered on de-

scribing each study, conducting comparisons, and analyzing

the distinct attributes within each literature. Through this

paper, we have been able to propose guidelines aimed at

researchers interested in file fragmentation and building back-

ground knowledge in related topics.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korea govern-

ment (MSIT), KIAT grant funded by the Korea Government

(MOTIE), and Korea Institute of Science and Technology

Information (KISTI). (No. NRF-2021R1C1C1010861, NRF-

2022R1A4A5034130, KIAT-P0012724, RS-2022-00166541)

(Corresponding Author: Yongseok Son).

REFERENCES

[1] K. A. Smith and M. I. Seltzer, “File system aging—increasing the
relevance of file system benchmarks,” in Proceedings of the 1997 ACM

SIGMETRICS international conference on Measurement and modeling

of computer systems, pp. 203–213, 1997.
[2] A. Conway, A. Bakshi, Y. Jiao, W. Jannen, Y. Zhan, J. Yuan, M. A. Ben-

der, R. Johnson, B. C. Kuszmaul, D. E. Porter, et al., “File systems fated
for senescence? nonsense, says science!,” in 15th USENIX Conference

on File and Storage Technologies (FAST 17), pp. 45–58, 2017.
[3] C. Ji, L.-P. Chang, L. Shi, C. Wu, Q. Li, and C. J. Xue, “An empirical

study of {File-System} fragmentation in mobile storage systems,” in
8th USENIX Workshop on Hot Topics in Storage and File Systems

(HotStorage 16), 2016.
[4] J. Park and Y. I. Eom, “Fragpicker: A new defragmentation tool for

modern storage devices,” in Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles, pp. 280–294, 2021.

[5] S. S. Hahn, S. Lee, C. Ji, L.-P. Chang, I. Yee, L. Shi, C. J. Xue, and
J. Kim, “Improving file system performance of mobile storage systems
using a decoupled defragmenter,” in 2017 USENIX Annual Technical

Conference (USENIX ATC 17), pp. 759–771, 2017.
[6] A. Conway, E. Knorr, Y. Jiao, M. A. Bender, W. Jannen, R. Johnson,

D. Porter, and M. Farach-Colton, “Filesystem aging:{It’s} more usage
than fullness,” in 11th USENIX Workshop on Hot Topics in Storage and

File Systems (HotStorage 19), 2019.
[7] S. Kadekodi, V. Nagarajan, and G. R. Ganger, “Geriatrix: Aging what

you see and what you {don’t} see. a file system aging approach for
modern storage systems,” in 2018 USENIX Annual Technical Conference

(USENIX ATC 18), pp. 691–704, 2018.
[8] J. Park, D. H. Kang, and Y. I. Eom, “File defragmentation scheme for

a log-structured file system,” in Proceedings of the 7th ACM SIGOPS

Asia-Pacific Workshop on Systems, pp. 1–7, 2016.
[9] J. Park and Y. I. Eom, “Anti-aging lfs: Self-defragmentation with

fragmentation-aware cleaning,” IEEE Access, vol. 8, pp. 151474–
151486, 2020.

[10] J. Park and Y. I. Eom, “Filesystem fragmentation on modern storage
systems,” ACM Transactions on Computer Systems, 2023.

[11] G. Zhu, J. Lee, and Y. Son, “An efficient and parallel file defragmentation
scheme for flash-based ssds,” in Proceedings of the 37th ACM/SIGAPP

Symposium on Applied Computing, pp. 1208–1211, 2022.
[12] J. Park and Y. I. Eom, “File fragmentation from the perspective of i/o

control,” in Proceedings of the 14th ACM Workshop on Hot Topics in

Storage and File Systems, pp. 126–132, 2022.
[13] T. Heo, D. Schatzberg, A. Newell, S. Liu, S. Dhakshinamurthy,

I. Narayanan, J. Bacik, C. Mason, C. Tang, and D. Skarlatos, “Iocost:
block io control for containers in datacenters,” in Proceedings of

the 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 595–608, 2022.
[14] R. Kesavan, M. Curtis-Maury, V. Devadas, and K. Mishra, “Storage

gardening: Using a virtualization layer for efficient defragmentation in
the {WAFL} file system,” in 17th USENIX Conference on File and

Storage Technologies (FAST 19), pp. 65–78, 2019.

787

