
A Survey on Epoch-based In-Memory
Database Systems

Lan Anh Nguyen, Sangjin Lee, Hyung Tae Lee, and Yongseok Son
Department of Computer Science and Engineering, Chung-Ang University

Abstract—In-memory databases has emerged as the most
favorable modern database replacing with traditional ones to
sufficiently handle with storing, retrieving, and processing large
collections of data in big data applications. High speed in
storing, retrieving, processing of in-memory databases makes
itself outperform classic databases and becomes the most promi-
nent database nowadays. However, along with rapid growth of
collected data from intensive-workload applications, in-memory
databases should achieve an exceptional scalability to deal with
the huge amounts of received data. In addition, they must over-
come their internal disadvantages regarding to durability and
persistence. Epoch-based mechanisms are suitable solutions for
scalability, durability, and persistence issues, while maintaining
excellent performance in speed of in-memory databases. This
study provides a survey of epoch-based in-memory databases in
terms of their database management architecture, classification
of epoch-based mechanisms used in, and current developments
of epoch-based in-memory database systems.

Index Terms—In-memory database, big data, storage engine,
epoch-based mechanisms,

I. INTRODUCTION

In data-driven world todays, databases play a critical role,
storing, retrieving, processing massive data with low-latency.
In-memory database has become the best candidate for the
database position in data-driven or big data applications.
This type of database is a modern data management system,
storing data in the system’s main memory (e.g., most often
RAM) [1]. It works as the next generation of databases and
opposes to traditional databases that use disks for storing.
Popular in-memory databases used in data-driven applications
are MongoDB Atlas [2], Redis [3], Aerospike [4], Silo [5],
InluxDB [6], KeyDB [7], VoltDB [8], etc.

Basically, unlike on-disk databases, there is no need to
perform disk I/O to query and update data in in-memory
databases, helping to access data faster. Additionally, it also
provides flexibility, reliability, high availability, and instanta-
neous ACID (e.g., Atomic, consistent, isolated, and durable)
adherence [1]. Therefore, in-memory databases are ideal for
applications demanding real-time responses, such as IoT ap-
plications, gaming, session management, read-heavy applica-
tions, edge AI/ML, fraud detection, etc. However, it faces with
some drawbacks, such as high cost, lack of data persistence,
risk of data loss, and architecture complexity. A comparison
between in-memory and on-disk database management sys-
tems (DBMS) is provided in Table I.

As shown in Table I, scalability, durability, and persistence
are serious issues in in-memory database management systems
(I-DBMS), which have to be addressed carefully. These issues

TABLE I
A COMPARISON OF IN-MEMORY AND ON-DISK DBMS

In-Memory DBMS On-Disk DBMS

Primary
storage
medium

Memory Disk

Programming Simpler Quite difficult

Performance Extremely fast Slower

Scalability

Limited by available
memory or limited if

not use distributed
nodes

Possible

Durability
and

Persistence
Not well guaranteed Guaranteed

Data
volume

Limited by available
memory Much larger

Cost Higher Lower

Use cases
Applications require

low-latency or
real-time access

Applications require to
handle large datasets

are directly related to two critical units in the storage engine of
I-DBMS, transaction and recovery managers. To be specific,
the transaction manager schedules transactions to guarantee
a logically consistent state of the database [9]. The recovery
manager keeps the operation log and is responsible for restor-
ing the system in case of a failure or crash [9].
Besides, big data applications generate massive concurrent
operations (i.e., reading, writing, renaming, deleting, etc.). To
control the concurrency in this case, transaction and lock man-
agers in the storage engine of I-DBMS cooperate to guarantee
logical and physical data integrity while ensuring efficient
executions of concurrent operations [9]. Like transaction and
recovery managers holding particular responsibility in the
storage engine, the lock manager has its own duty. It keeps
locks on the database objects for running transactions, which
ensures that concurrent operations can not violate physical data
integrity [9].

To solve these issues in in-memory databases, epoch-based
mechanisms are one of appropriate solutions. The epoch
concept has been widely utilized in the context of operating
systems and computational systems. An epoch refers to a
period in which modifications take place. According to epoch-
based mechanisms, operations of a system can be divided into
distinct epochs, in other words, epoch works as a boundary

788979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

to ensure the serialization requirement of the system. Epoch-
based mechanisms raise some potential advantages, such as
efficient resource management, working as synchronization
points in synchronization, deallocation points in garbage col-
lection of memory management, and fault tolerance (e.g., data
can be checkpointed or replicated at epoch boundaries, making
easier to recover from failure or crash).
There are various works recently employing epoch-based
mechanisms to improve system performance (e.g., popularly
in databases and operating systems). In term of operating sys-
tems, [10] proposes and implements a portable and scalable
synchronization framework for filesystems by designing an
epoch-based synchronization mechanism. Also in operating
systems, [11] introduces a barrier-enabled I/O stack, which
consists of three key components, an epoch-based I/O schedul-
ing, an order-preserving dispatch, and a dual-mode journaling,
to eliminate the overhead from the storage order preserving in
modern I/O stack. In term of databases, [12] addresses the log
redundancy (e.g., double-logging) in log-structured merge-tree
based relational databases. In this study, the double-logging
is removed and replaced with a passive data persistence.
The persistence mechanism is based on epoch, parallelly
commiting and flushing log items on multiple memory buffers
according to epoch boundaries.

Epoch-based mechanisms have recently been also applied
into in-memory databases. For more details, they are used in
various cases, such as transactions in multicore databases [13],
[14], logging for data persistence and recovery [15], [16],
garbage collection in memory management [17], [18], and
replication in distributed databases [19], etc. These epoch-
based mechanisms will be considered and analyzed in this
study.

Addressing the significance of epoch-based mechanisms and
the lack of a survey on epoch-based fundamental approaches
in in-memory database management systems, we contributes:

• First, we provide an architecture of an in-memory
database management system (I-DBMS) based on con-
ventional database management systems. Additionally,
main steps in running of in-memory storage engine (I-
SE) are also analyzed in this study

• Second, we specify three main approaches of epoch-based
mechanisms used in I-SE

• Finally, we contribute a survey of recent studies on epoch-
based in-memory databases

This study is organized as follows:
The section II shows an architectural overview and main steps
of in-memory storage engine. Furthermore, it also provides
a classification of epoch-based mechanisms in in-memory
databases. A survey of recent studies on epoch-based in-
memory databases is shown in section III. Conclusions are
provided in the last section.

Cluster
Communication

Client
Communication

Transport

Query Processor

Query Parser

Query Optimizer

Execution Engine

Remote Execution Local Execution

Storage Engine

Transaction
Manager Lock Manager

Access Methods

Buffer Manager Recovery
Manager

Backup

Fig. 1. Architecture of an in-memory database management system

II. AN OVERVIEW OF EPOCH-BASED IN-MEMORY
DATABASES

A. Architecture of epoch-based in-memory database man-
agement system (I-DBMS)

To get an overview of epoch-based in-memory databases,
we firstly provide the architecture of an in-memory database
management system (I-DBMS, e.g., sometimes called “main
memory database management system”) in Figure 1. Basically,
I-DBMS maintains the common architecture of a DBMS
explained in [9]. The architecture contains four main engines,
such as transport, query processor, execution engine, and
storage engine. Unlike on-disk DBMS using disks as the
primary storage, I-DBMS uses disks as a backup device for
persistence and recovery.
This study focuses on epoch-based mechanisms for storage,
so we dive deeply only the in-memory storage engine (I-SE)
of the architecture in Figure 1. I-SE in I-DBMS consists of
five main components with dedicated responsibilities [9]:

• Transaction manager: schedules transactions to guaran-
tee a logically consistent state of the database

• Lock manager: locks on the database objects for running
transactions, ensuring that concurrent operations can not
violate physical data integrity

• Access methods: manage accesses and organize data on
main memory. They include files and storage structures

• Buffer or resource manager: manages data pages or
resources in memory

• Recovery manager: keeps the operation log and is
responsible for restoring the system in case of a failure
or crash

789

Start database
1. Receive
concurrent
operations

2. Backup
transaction

logs
3. Process data 4. Replicate

database

Fig. 2. Main steps in operation of storage engine in I-DBMS

However, considering the epoch-based concept, the I-SE in
I-DBMS usually employs epoch-based mechanisms for trans-
actions, recovery, and resource management, directly relating
to the transaction manager, buffer or resource manager, and
recovery manager. We consider these components as:

• Epoch-based transaction manager
• Epoch-based buffer or resource manager
• Epoch-based recovery manager

While the transaction manager along with the lock manager
affect the concurrency control, synchronization, consistency,
and scalability, the buffer manager is responsible for managing
pages or resources in memory, relating to garbage collection,
and reclamation. The recovery manager is responsible for log-
ging to the backup device, and replicating to distributed nodes
to guarantee the persistence and recovery in case of a failure
or crash. Therefore, we highlight main components (e.g.,
transaction manager, buffer manager, and recovery manager)
that can employ the epoch concept to improve performance
system in Figure 1.

Figure 2 shows four main steps of I-SE, which are managed
by epoch-based components in I-SE as follows:

1) Receiving concurrent operations (i.e., write, read, re-
name, delete, etc.), handled by the epoch-based trans-
action manager

2) Backuping transaction logs, handled by the epoch-based
recovery manager

3) Processing data, handled by the epoch-based buffer or
resource manager

4) Replicating data records, handled by the epoch-based
recovery manager

In the following part, we provide a classification of epoch-
based mechanisms used by components in I-SE to improve
the system performance.

B. Epoch-based mechanisms used in in-memory storage
engine (I-SE)

According to the above analysis on the architecture of I-
DBMS, main steps of I-SE, and epoch, we propose a classifi-
cation of epoch-based mechanisms used in I-SE in Figure 3.
In this classification, we consider which components utilizing
the epoch concept to categorize epoch-based mechanisms in
I-SE. Therefore, there are three main epoch-based approaches
in our classification, such as epoch-based transaction manage-
ment (e.g., on epoch-based transaction manager), epoch-based
buffer or resource management (e.g., on epoch-based buffer
or resource manager), and epoch-based recovery management
approaches (e.g., on epoch-based recovery manager).
In the following part, we provide an analysis on the three
approaches.

Epoch-based
Mechanisms in In-
Memory Storage

Engine

Epoch-based
Transaction
Management

Epoch-based
Buffer and
Resource

Management

Epoch-based
Recovery

Management

Epoch-based
Scalability

Mechanisms

Epoch-based
Synchronization
Mechanisms

Epoch-based
Garbage
Collection

Mechanisms

Epoch-based
Logging

Mechanisms

Epoch-based
Replication
Mechanisms

Fig. 3. Classification of epoch-based mechanisms used in in-memory storage
engine

1) Epoch-based transaction management: As explained
in II-A, transactions should be coordinated, scheduled to main-
tain the consistent state of in-memory databases. Therefore,
synchronization mechanisms guaranteeing the consistency are
critical in databases.
Epoch-based synchronization mechanisms are appropriate and
efficient to guarantee the consistency requirement of in-
memory databases. In these mechanisms, epochs work as
boundaries or synchronization points for updates or modifi-
cations of data.
Besides, nowadays, to handle intensive workloads from big
data applications, transactions in in-memory databases should
be scalable to deal with the issue. Utilizing the potential of
multi-core processing along with epoch-based mechanisms,
transactions in in-memory databases can perform the scala-
bility while guaranteeing the consistency of the system.
As a result, for the epoch-based transaction management ap-
proach, there are two main types of epoch-based mechanisms:

• Epoch-based synchronization mechanisms
• Epoch-based scalability mechanisms
2) Epoch-based buffer or resource management: As ex-

plained in II-A, the buffer or resource manager in in-memory
databases is responsible for resource management for effective
resource allocation and deallocation.
Also utilizing epochs as synchronization points or stability
points, the buffer or resource manager can prevent resource
leaks or inefficient resource allocation. There is a popular
term in resource management in databases, called “garbage
collection”.
The garbage collection refers to the process in databases
of identifying and removing data that is no longer used or
referenced by databases. This process helps to reclaim resource
space and guarantee efficient database performance.
Maintaining the above operation of the garbage collection,
epoch-based mechanisms enable to collect or reclaim no
longer used resources at epoch boundaries, ensuring that
memory is efficiently managed without causing memory leaks.

790

TABLE II
RECENT STUDIES ON EPOCH-BASED IN-MEMORY DATABASES

Silo [13]
Scalable
Replica-
tion [14]

LeanStore [17] Low-latency
Logging [15]

Instant
Recovery [16] Deuteronomy [18]

Commit and
Replica-
tion [19]

Scalability ✓ ✓

Synchronization ✓ ✓

Garbage
collection ✓ ✓

Logging ✓ ✓

Replication ✓ ✓

As a result, for the epoch-based buffer or resource manage-
ment approach, epoch-based mechanisms can be considered
as:

• Epoch-based garbage collection mechanisms or epoch-
based reclamation mechanisms

3) Epoch-based recovery management: As explained
in II-A, the recovery manager manages operation logs or trans-
action logs for restoring the system in case of a failure or crash,
ensuring the data persistence and durability of databases.
Additionally, this component in I-SE is also responsible for
replicating critical data, system states to distributed nodes to
guarantee the fault tolerance of databases.
Epoch-based logging and replication mechanisms are satis-
factory, maintaining to efficiently log transaction logs and
replicate data at epoch boundaries.
As a result, for the epoch-based recovery management ap-
proach, there are two main types of epoch-based mechanisms:

• Epoch-based logging mechanisms
• Epoch-based replication mechanisms

III. CURRENT DEVELOPMENTS IN EPOCH-BASED
IN-MEMORY DATABASES

There are various studies utilizing the epoch concept to
improve performance of in-memory databases, such as [13]–
[19]. A summary of these works is shown in Table II, which
classifies them into specific epoch-based mechanisms, such as
scalabilty, synchronization, garbage collection, logging, and
replication, as explained in II-B. For more details:

• Silo [13]: This in-memory database system uses epoch as
a serialization point to identify transactions, guaranteeing
the synchronization of system. In addition, the in-memory
database uses periodically-updated epochs, improving it
scalability.

• Scalable Replication [14]: This database system uses
epochs to batch transactions in an actual commit order.
Hence, batch of transactions in an epoch can be replayed
on the back up database while guaranteeing the order
of transaction. On the other hand, because a batch of
transaction in each epoch is replayed to the back up,
which is different from replaying one by one transaction,
the scalability of this database is also improved.

• LeanStore [17]: This in-memory database designs an
epoch-based reclamation. It has a global epoch growing
periodically. Threads wanting to evict or delete a page
will be assigned a local epoch. Before pages are actually
evicted, they are assigned local epochs. A comparison
between local epochs of the threads and pages will be
considered to guarantee a safe page eviction.

• Low-latency Logging [15]: This study proposes a logging
improvement for Silo database [13]. Epochs are used
as persistence points for concurrent logging threads. As
a result, the persistence is guaranteed via epoch-based
logging. In addition, using concurrent logging scheme
raises a low latency logging.

• Instant Recovery [16]: This study addresses the time bot-
tleneck during the recovery phase of in-memory database
systems. Epoch is used to index checkpoints without
waiting, making the recovery phase to be instant.

• Deuteronomy [18]: Epochs in this study work as stability
points to guarantee entries in the garbage list safely
reused. Entries, added to the garbage list, are assigned
local epochs. Running threads are also assigned local
epochs. According to their local epochs, entries in the
garbage list can be considered as unlinked or not.

• Commit and Replication [19]: Epochs in this study are
used as commit points for transactions in the systems.
Additionally, within an epoch, transactions are replicated
to distributed nodes for an efficient replication.

IV. CONCLUSIONS

In this study, we firstly provide an architecture of in-
memory database management system based on conventional
database management system and main steps in running of
in-memory storage engine, which utilize the epoch concept to
accelerate the system performance. Additionally, we propose a
classification of epoch-based mechanisms used in in-memory
databases. Finally, we show a summary of recent studies on
epoch-based in-memory databases.
Eventhough in-memory database performs as a next-
generation database for big data applications and can be
boosted by epoch-based mechanisms, it still struggles with
some challenges, such as official epoch-based in-memory
databases and a shortage of comprehensive survey of epoch-
based mechanisms for in-memory databases. Future studies

791

on epoch-based in-memory databases should deal with these
challenges carefully, promoting a profound development of in-
memory databases.

ACKNOWLEDGEMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea govern-
ment (MSIT), KIAT grant funded by the Korea Government
(MOTIE), and Korea Institute of Science and Technology
Information (KISTI). (No. NRF-2021R1C1C1010861, NRF-
2022R1A4A5034130, KIAT-P0012724) (Corresponding Au-
thor: Yongseok Son).

REFERENCES

[1] What is an in-memory database? https://www.voltactivedata.com/blog/
2021/06/whats-an-in-memory-database/. Accessed: 2023-08-13.

[2] Mongodb atlas. https://www.mongodb.com/atlas. Accessed: 2023-08-13.
[3] Redis. https://redis.io/. Accessed: 2023-08-13.
[4] Aerospike. https://aerospike.com/. Accessed: 2023-08-13.
[5] Silo. https://dbdb.io/db/silo. Accessed: 2023-08-13.
[6] Influxdb. https://www.influxdata.com/db/. Accessed: 2023-08-13.
[7] Keydb. https://docs.keydb.dev/. Accessed: 2023-08-13.
[8] Voltdb. https://dbdb.io/db/voltdb. Accessed: 2023-08-13.
[9] A. Petrov. Database Internals. O’Reilly Media, Incorporated, 2019.

[10] Woong Sul, Heon Y Yeom, and Hyuck Han. montage: Nvm-based
scalable synchronization framework for crash-consistent file systems.
Cluster Computing, 24(4):3573–3590, 2021.

[11] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek Oh, Seongbae
Son, Jooyoung Hwang, and Sangyeun Cho. {Barrier-Enabled}{IO}
stack for flash storage. In 16th USENIX Conference on File and Storage
Technologies (FAST 18), pages 211–226, 2018.

[12] Kecheng Huang, Zhaoyan Shen, Zhiping Jia, Zili Shao, and Feng Chen.
Removing {Double-Logging} with passive data persistence in {LSM-
tree} based relational databases. In 20th USENIX Conference on File
and Storage Technologies (FAST 22), pages 101–116, 2022.

[13] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy transactions in multicore in-memory databases. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32, 2013.

[14] Dai Qin, Angela Demke Brown, and Ashvin Goel. Scalable replay-based
replication for fast databases. Proceedings of the VLDB Endowment,
10(13):2025–2036, 2017.

[15] Masahiro Tanaka and Hideyuki Kawashima. Stable low latency logging
for epoch-based in-memory database. In 2022 IEEE International
Conference on Big Data and Smart Computing (BigComp), pages 167–
170, 2022.

[16] Leon Lee, Siphrey Xie, Yunus Ma, and Shimin Chen. Index checkpoints
for instant recovery in in-memory database systems. Proceedings of the
VLDB Endowment, 15(8):1671–1683, 2022.

[17] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neu-
mann. Leanstore: In-memory data management beyond main memory. In
2018 IEEE 34th International Conference on Data Engineering (ICDE),
pages 185–196. IEEE, 2018.

[18] Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman,
and Rui Wang. High performance transactions in deuteronomy. In
Conference on Innovative Data Systems Research (CIDR 2015), 2015.

[19] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Epoch-based
commit and replication in distributed oltp databases. 2021.

792

