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Abstract— The conventional resource distribution 
methodologies rely on numerical methodologies to enhance 
diverse performance metrics. Most of these endeavors can be 
classified as immediate, given that the optimization 
determinations stem from the present network condition without 
regard for historical network states. Although utility theory has 
the capacity to integrate long-term optimization consequences 
into these optimization actions, the escalating diversity and 
intricacy of network settings have made the resource allocation 
challenges insurmountable. The optimization of resources at an 
optimum level stand as a foundational hurdle for densely 
populated and mixed wireless environments with an extensive 
array of wireless connections. Owing to the intricate and non-
linear nature of the optimization conundrum, the quest for the 
best resource allocation is a resource-intensive undertaking. 
Among the prospective solutions, reinforcement learning (RL) 
emerges as a viable candidate to resolve resource allocation 
dilemmas optimally across fluctuating network scenarios. This 
paper presents an innovative, centralized RL-based resource 
allocation method tailored for a multi-cell network, aiming to 
optimize connection stability and data rate by improving the 
quality of experience (QoE). Specifically, a deep Q-network 
(DQN) approach is employed to realize this objective. Empirical 
findings underscore that the proposed deep reinforcement 
learning (DRL) based resource allocation strategy delivers better 
performance within a multi-cell scenario. 

Keywords— Resource allocation, reinforcement learning, Deep 
Q-network, AI, Beyond 5G/6G cellular. 

I.  INTRODUCTION  
In recent years, the field of cellular mobile communications 

has undergone significant advancements. It becomes evident that 
telecommunication operators must factor in the potential 
challenges arising from commoditization and the quality of service 
(QoS) for mobile users during the initial phase of 6G deployment 
[1]. In the conventional radio access network deployment, 
individual base stations (BSs) are physically equipped with a fixed 
number of antennas, facilitating radio functionalities within limited 
coverage areas. However, achieving higher transmission rates 
necessitates the installation of a vast number of physical BSs. This 
introduces complexities in substantial investments, wireless 
channel interference, different resource allocation, and diverse 
QoS requirements for  different user equipment’s (UEs) [2]. The 
optimal allocation of resources becomes a pivotal concern due to 
the enormous number of connections and the ultra-dense 
deployment of base stations on a significant scale. Historically, 
addressing this challenge involved heuristic techniques as the non-
convex nature of the optimization problem presented obstacles. 

Yet, these approaches are computationally intensive, rendering 
them impractical for the demands of large-scale cellular networks. 
In contemporary times, machine learning (ML) techniques have 
been employed to derive pragmatic solutions for resource 
allocation challenges within expansive cellular networks [2]. 
These studies utilize datasets generated through diverse heuristic 
methodologies. However, these approaches entail considerable 
computational costs and time consumption. Consequently, the 
adoption of a supervised deep learning (DL) approach proves to be 
unsuitable for large-scale network systems [3].  

In recent times, the fusion of DL with RL has given rise to 
Deep Reinforcement Learning (DRL) [4]. By harnessing this 
combination, DRL exhibits promise in effectively handling 
complex control problems. The integration of DL and RL 
empowers DRL to distill valuable insights from vast and high-
dimensional datasets, enabling the acquisition of optimal action 
policies in such complex scenarios. 

In the aforementioned context, we put forth a centralized 
downlink resource allocation strategy rooted in DRL, mainly 
employing the DQN algorithm. This scheme is tailored for multi-
cell networks, aiming to optimize the twin objectives of 
connection stability and data rates. Our approach makes use of the 
mobile-env [5] environment, wherein they define the state space, 
action space, and reward function to guide the DRL agent's 
decisions. Through an array of simulation experiments 
encompassing various training parameters, we showcase the 
scalability and robustness of our proposition, demonstrating its 
efficacy within a comprehensive network scenario. 

II. RELATED STUDIES 
DRL has emerged as a promising contender for optimizing the 

long-term utility of resource allocation [6]. In a distinct effort [7], 
researchers employed the DRL framework to execute joint user 
association and resource allocation within the heterogeneous 
network. The overarching objective was to enhance the network's 
long-term utility while upholding QoS prerequisites. Likewise, in 
other studies, a multi-agent DQN [8] and a centralized DQN 
approach [9] were harnessed for power allocation in wireless 
networks, aiming to maximize the system's weighted sum-rate. 
Furthermore, in [10], a two-pronged approach involving 
centralized and multi-agent DRL techniques was adopted for 
resource allocation within multi-cell scenarios. Predominantly, 
extant research on distributed strategies utilize multi-agent DRL 
and actor-critic algorithm [10, 11]. Some investigations, albeit 
fewer, delve into centralized DRL approaches but often within 
constrained settings involving smaller base stations and network 
configurations. Notably, while Actor-Critic methods offer a 
synthesis of policy-based and value-based learning, their intricate 
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architecture and susceptibility to convergence issues can deter 
those in search of straightforward solutions. In addition, the 
accrued benefits may not consistently outweigh the augmented 
implementation intricacies, particularly when more streamlined 
alternatives like DQN prove adequate. 

III. RESOURCE ALLOCATION IN MULTI-CELL NETWORKS: A 
DRL APPROACH 

A. DQN approach 
DQN constitutes a fusion of a deep neural network (DNN) and Q-
learning reinforcement algorithm. At any given time, t, the DQN 
agent obtains a state st from the encompassing state space S and 
proceeds to execute an action at from the action space A. This action 
is determined by the agent's adherence to a policy, denoted as 
 (at|st), which signifies the mapping from state st to action at. 
Subsequent to the action at being performed, the agent receives a 
reward rt and transitions to a new state st+1. This sequential process 
continues until the terminal state is reached, upon which the cycle 
restarts anew. The agent's primary aim is to maximize the cumulative 
reward, which is characterized as the discounted accumulated reward 
and denoted as Rt. This cumulative reward is calculated as the 
summation, over an infinite horizon, of rewards and the equation 
denoted as below where  X is discount factor and X is base stations. 

 

ℛ𝑡𝑡  𝛾𝛾𝑋𝑋𝑟𝑟𝑡𝑡 𝑋𝑋
∞

𝑋𝑋
 () 

In this context, the discount factor , existing within the interval (0,1], 
governs the significance assigned to future rewards relative to present 
rewards. The action-value function Q(s,a) and expressed as  

 
𝒬𝒬𝜋𝜋 𝑠𝑠 𝑎𝑎 𝔼𝔼 ℛ𝑡𝑡 𝑠𝑠𝑡𝑡 𝑠𝑠 𝑎𝑎𝑡𝑡 𝑎𝑎

 () 
represents the anticipated return upon selecting action a within state 
s while adhering to policy . This function encapsulates the expected 
cumulative reward of following a certain policy. The optimal action-
value function, denoted as Q*(s,a) = maxQ(s,a), reflects the 
highest achievable action value attainable by adhering to any policy 
within state s and for action a. This optimal function is characterized 
by the Bellman equation: 

𝒬𝒬∗ 𝑠𝑠 𝑎𝑎 𝔼𝔼𝑠𝑠′ 𝑟𝑟 𝛾𝛾 𝑎𝑎′ 𝒬𝒬
′ 𝑠𝑠′ 𝑎𝑎′  𝑠𝑠 𝑎𝑎  

 () 

In the realm of DQN, neural network is leveraged to approximate 
the optimal action-value function, as Q(s,a; )  Q*(s,a). Here, 
Q(s,a; ) denotes the DQN, with θ representing the neural network's 
parameter. Through iterative updates, the Q-network is trained, 
leading to a reduction in the mean-squared error associated with the 
Bellman equation.  

B. Environment description  
Within this study, we employed mobile-env [5], an accessible 

and uncluttered platform devised to facilitate the training, assessment, 
and comparison of coordination methodologies, with a particular 
focus on their applicability in wireless mobile networks.  

Given the intricacies inherent to mobile scenarios, achieving a 
comprehensive depiction of the environment state is impractical, 
even when considering a centralized agent [10]. Thus, the utilization 
of a partially observable Markov decision process (MDP) becomes 

pertinent. This MDP is characterized by a tuple (S, A, R), 
encompassing states S, actions A, and the reward function R, as 
expounded upon subsequently. 

• States, S: At each time step, the DQN algorithm solely acquires 
insight into the present connections (Cj) of (UEs), their SINR 
(SINRj) and utility (Uj) with reference to each cell cj and UE uj. 
Mobile-env standardizes the values of all states to fall within the 
interval of [−1, 1] (or [0, 1]).  

• Actions, A: The protocol streamlines overhead by enabling each 
UE to connect or disconnect from a single cell at a time, 
efficiently reducing the action space compared to arbitrary cell 
subsets. For aj=i (i{1,...,n}), the action toggles uj’s connection 
status with cell cj, creating or ending a connection. Conversely, 
aj=0 is a no-op, leaving uj’s connections unchanged. 

• Reward, R: As per the specification outlined in mobile-env [5], 
the primary objective centers on elevating the average QoE for 
UEs. The reward attributed to DQN at a specific time step t is 
computed as the mean of current utilities across all UEs. The 
reward function is expressed  

 

ℛ 𝑁𝑁 ∑ 𝑗𝑗 ∈ … 𝑁𝑁
 () 

Internally, the DRL agent endeavors to optimize long-term 
utility by maximizing cumulative rewards that have been 
discounted over time. 

IV. IMPLEMENTATION AND RESULTS 
The simulation configuration for our proposed resource allocation 

scheme employs DQN to tailor a multi-cell network approach. This 
paper explores the approach in a customized mobile-env[5] simulation 
scenario. The customized mobile-env scenario configuration has two 
base stations, and UEs is set at two, and their movement velocity is 
10m/s, giving rise to a controlled environment for experimentation. To 
initiate training for our DQN model, it's imperative first to define the 
neural network-based Q network. For this purpose, we adopt a deep 
neural network comprising two hidden layers, leveraging the 'tanh' 
activation function for these layers. In terms of the Q-network's input 
layer size, it encompasses a state size of 12, accounting for the state 
space and the number of users. Moreover, the output layer of the 
DQN, tailored to our specific mobile-env scenario, embodies a total of 
three actions, representing the number of cells plus an additional 
option.  

The experimental framework employed in this study utilized a 
computing system with an Intel® Core™ i7-8700 CPU @3.20GHz 
×12 Processor, 16GB RAM, and NVIDIA GeForce RTX20270 GPU 
and operated on the Windows 10 platform. The computing provisions 
ensure a robust foundation for conducting our investigation. 

A visual representation in Fig. 1 provides the simulation scenario 
under examination. The figure includes two base stations, each with its 
respective coverage range. Additionally, the movement patterns of 
users are captured through snapshots taken at different time slots. The 
lines drawn between UEs, and BSs symbolize the connections, further 
denoting the QoE through a color spectrum. Green hues represent 
favorable QoE, while red hues indicate suboptimal performance. This 
visualization provides an essential context for understanding the 
dynamic nature of user mobility and connectivity. 

The presented outcomes are an aggregation of results obtained 
from an average of 50 to 70 runs, each spanning 50,000 steps. The 
evaluation of the proposed DQN scheme hinges on two critical 
metrics: the sum of average data rate and rewards. These metrics 
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encapsulate the scheme's performance, which is centered on 
maximizing QoE through the reward function.  

 
Fig. 1. Resource allocation in mobile-env without any model deployment 

As depicted in Fig. 2 and Fig. 3, the results indicate the successful 
convergence of the DQN model. The architecture of the DQN, 
specifically the number of hidden layers, assumes a pivotal role in the 
scheme's efficacy. This is due to the DQN's function of approximating 
the action value function (Q). More hidden layers enable the DQN to 
capture additional features from the state, thereby influencing its 
learning capacity. 

 
Fig. 2. DQN algorithms average normalized reward over period.  

In light of this, we conduct experiments by varying the DQN's 
hidden layer size and activation function. The outcomes, as depicted in 
Fig. 2, reveal that increasing the hidden layer size may lead to a slight 
degradation in the performance of the DRL model. This phenomenon 
can be attributed to the potential overfitting arising from the DQN 
learning extraneous features or noise due to excessive hidden layers.  

 
Fig. 3. Resource allocation in mobile-env with DQN algorithm  

In Fig. 3, we delve into the intricacies of the multi-cell selection 
scenario. Notably, this setup showcases the consistent connectivity of 
UEs to cells, alongside an examination of data rates and average 
utilities as crucial indicators of rewarding performance. A discernible 
pattern emerges, where current utility consistently outperforms 
previous utility. This trend underscores an improved QoE as a 
consequence of the approach. 

V. CONCLUSIONS 
We have presented a novel DRL-based scheme for resource 

allocation by maintaining QoE in multi-cell networks. Specifically, we 
have used DQN with experience replay for the proposed scheme. 
Simulation results encompass that a comprehensive exploration of the 
proposed DQN with two hidden layers is enough to approximate the 
action-value function for this case. The insightful visualizations shed 
light on the scheme's intricacies, convergence, and the factors 
impacting its efficacy. These findings contribute to the broader 
discourse surrounding resource allocation optimization in multi-cell 
scenarios, enhancing our understanding of its practical implications. 
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