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Abstract—Tourism is an important industry sector that re-
quires tour companies to plan multiple routes for different tour
groups, which is called tour multi-route planning. This paper
focuses on tour multi-route planning, which can improve the
economic benefit and allocation efficiency of tour resources. In
this paper, we propose a novel multiple routes planning model
that captures the real-world tourism scenario and practical
constraints. We use matrix-based differential evolution to opti-
mize the proposed model. Numerical evaluation results show the
matrix-based differential evolution can be effective to optimize
the proposed model.

I. INTRODUCTION

According to the 2020 policy brief by the United Nations,
tourism is a vital industry for many countries and regions, con-
tributing more than 20 percent of their gross domestic product
(GDP) and ranking as the world’s third-largest export sector
[1]. Tourism and tour agencies face the intricate challenge
of designing numerous routes concurrently for their groups,
which can number anywhere from a handful to several dozens.
Strategically planning these multi-routes can lead to significant
cost reductions and potentially attract a broader customer base
for these agencies. However, multi-route design is not merely
about identifying the briefest pathways. It is a complex proce-
dure with numerous considerations and limitations. Traditional
algorithms, such as Dijkstra’s, often fall short in adequately
addressing these multi-route challenges. [2], [3]. Furthermore,
a strategy to efficiently optimize such complicated systems
is required, not least as the number of tour groups and the
corresponding constraints increase.

It is worthwhile to mention that evolutionary computation
(EC) can plan tour routes using only the publicly available
data, which is very useful for helping tour companies plan
multiple tour routes. The work in [4] used the genetic algo-
rithm (GA) and simulated annealing to optimize the tour routes
in Medulin, Croatia. In [5], [6], ant colony optimization (ACO)
algorithms were applied for tour route planning and the work
in [7] used particle swarm optimization (PSO) to optimize the
tour route.

In previous discussions, we highlighted that tour multi-
route planning (TMRP) is essentially a multi-dimensional
optimization process with numerous constraints. Addressing
these intricate issues, inspired by matrix-based EC proposed in
[8], we propose a matrix-based differential evolution (matrix-
based DE). This approach offers two primary strengths: First,
in contrast to the foundational algorithm, the matrix-based DE

focuses entirely on matrix operations. These can be swiftly
executed using high-level APIs in the dedicated scientific
computing library. This compatibility facilitates leveraging the
power of GPUs to expedite computations, which is crucial for
ensuring adaptability in high-dimensional computing scenarios
down the line. Secondly, it enables the incorporation of
diverse linear algebra and matrix theory functions, allowing
for intricate operations at the collective level. These processes
significantly enhance our understanding of the population,
endowing Evolutionary Computation (EC) with amplified po-
tential. Our empirical assessments demonstrate the efficacy
of the proposed matrix-centered DE in addressing TMRP
challenges effectively.

II. PROBLEM MODEL

A. TMRP Formulation

In this segment, we introduce the specifics of the TMRP
model. The model incorporates M tourist attractions and P
tour assemblies. For clarity in notation, we use the indices m
and p to refer to the specific tourist attraction and the specific
tour group, respectively, with m ranging from 1 to M and p
from 1 to P . Each group, denoted by p, intends to explore np

attractions out of the total M options, with np ranging from
1 to M . The travel itinerary for the pth group, represented as
rp, encompasses these np chosen scenic spots. Specifically,

rp =
[
rp,1, rp,2, . . . , rp,np

]
(1)

denotes an ordered set consisting of np scenic spots to visit
in order by the pth tour group. That is, rp is a subset of
[1 : M ]np , ensuring that if k ̸= l, then rp,k is distinct from
rp,l. We assume that each tour group embarks from the main
tour center and concludes their journey at this starting point.
Hence, the journey of the pth tour group begins at the tour
center, ventures through scenic spots rp,1 and rp,2, and returns
to the tour center after their visit to rp,np

.
In this study, we consider two specific costs for each tour

group, represented by Cp,1 and Cp,2 for the pth group. The
cost Cp,1 accounts for the transportation expenses associated
with the geographical positions of the selected spots in rp. To
provide clarity on this, q0 is the geographical coordinate of
the tourist center, and qm indicates the location of the mth
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site. Then the total tour distance of the pth tour group is given
by

Dp =

(
np−1∑
k=1

d(qrp,k ,qrp,k+1
)

)
+ d(q0,qrp,1)

+ d(qrp,np
,q0), (2)

where d(·) signifies the geometric distance between two dis-
tinct locations. Define sp > 0 as the size of the pth tour
group, representing the count of tourists, and cdis > 0 as the
transportation cost for each unit of distance. Consequently,
Cp,1 can be articulated as

Cp,1 = cdisspDp. (3)

The subsequent cost, Cp,2, encompasses tour-related expenses,
including ticket costs, food charges, lodging fees, among
others, all groups on the choice of scenic spots in rp. Let
Cp,m > 0 represent the cumulative tour cost when the pth tour
group visit to the mth scenic spot. Subsequently, we deduce:

Cp,2 = sp

np∑
k=1

Cp,rp,k . (4)

In conjunction with the financial costs Cp,1 and Cp,2, we
propose an additional cost Cp,3, which reflects the appeal or
popularity of the chosen scenic spots in rp. The essence of
Cp,3 is to prioritize more frequented scenic spots in rp given
a comparable financial expense, as this could lure a greater
number of patrons to pay for the tour services. To this end,
consider Rm ∈ [1 : Rmax], which designates the standing of
the mth scenic spot, a discrete value spanning from 1 to Rmax,
gauging the scenic spot’s fame. Notably, a rank of 1 indicates
the premier scenic spot, with popularity decreasing as the rank
ascends.

It is notable that Cp,3 ought to diminish when more scenic
spots with lower rank values are incorporated in rp. A feasible
method for representing this function is the exponential map-
ping eRm , granting heightened distinction based on the rank.
As a result, Cp,3 can be represented as

Cp,3 =

np∑
k=1

eRrp,k . (5)

Therefore, when the set of P tour routes {rp}Pp=1 are given,
the overall weighted sum cost is represented by

P∑
p=1

(αCp,1 + βCp,2 + γCp,3). (6)

In this context, both α ∈ (0, 1] and β ∈ (0, 1] serve
as equilibrium coefficients between the two distinct financial
costs. To be precise, a larger value of α compared to β signifies
a preference for economically priced scenic spot, regardless
of their proximity. Conversely, a higher β inclines towards
choosing nearby scenic spots. The coefficient γ > 0 influences
{rp}Pp=1 to favor more sought-after scenic spots, provided it
does not surpass the stipulated maximum financial threshold.

B. Constraints in TMRP

1) C1: Valid tour routes: The first constraint C1 is needed
for valid tour routes. Obviously, card(rp) = np should be
satisfied and rp,k ̸= rp,l for all k, l ∈ [1 : np] with k ̸= l.

2) C2: Tour time constraints: The second constraint C2 is
about the time constraint for each tour group. The total time
consumption consists of two parts: the duration of time for
sightseeing and the duration of time for transportation.

3) C3: Accommodation requirements: Note that some
scenic spots have no accommodation of certain degrees or
levels, such as the 5-star hotel. Therefore, tour companies
should compensate consumers if the accommodation level
does not reach the tour group’s requirements.

4) C4: Load balancing between scenic spots: C4 is that
certain authorities can limit the number of groups allocated
by each tour company to a certain scenic spot over a period
of time. We need to consider that the number of tour groups
per scenic spot is less than the permit.

III. MATRIX-BASED DE

The first step of matrix-based DE is to initialize the popu-
lation. The formulation of this process is

X1 = [OnesN×1 × (U− L)]◦RN×D+OnesN×1×L, (7)

where OnesN×1 is a matrix with the shape of N ×1, RN×D

is a matrix with shape of N×D and filled up with the random
number ranging from 0 to 1, and U and L are the upper bound
and the lower bound.

Then, the mutation’s formulation is

Vg = Xg
[R∗

1 ,·]
+ F ◦

(
Xg

[R∗
2 ,·]

−Xg
[R∗

3 ,·]
)
, (8)

in which Xg
[R∗

1 ,·]
, Xg

[R∗
2 ,·]

, and Xg
[R∗

3 ,·]
are the three population

matrices, individual of which are randomly chosen from the
original population matrix.

The crossover is to select individuals from Vg and Xg , that
is

Ug = Vg ◦BC +Xg ◦BC , (9)

where BC is a Boolean matrix that indicates which individual
will be selected and BC is the inverse matrix.

Define f : RN×D → RN×1 as the evaluation function.
f(X) will output a vector E including the fitness of all
individuals. Compute the fitness of Ug and Xg ,

EUg = f(Ug), EXg = f(Xg), (10)

respectively. Then, compare EUg and EXg as

BE = EUg < EXg . (11)

Consequently, the new generation is

Xg+1 = Ug ◦ (BE ×Ones1×D) +Xg ◦ (BE ×Ones1×D).
(12)
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Fig. 1. 30 routes planning simultaneously optimized by Matrix-based DE with the population size 70. Each subgraph has 5 routes.

TABLE I
DATA OF TOUR GROUPS

Group Type I II III IV

Group Size 15 20 25 30
Scenic Spot 4 3 3 2
Tour Time 7 6 6 4
Hotel Rank 5 4 3 3

Quantity 3 5 7 15
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Fig. 2. Caption

IV. NUMERICAL EVALUATION

We collect 20 city data in Korea for simulation and use
matrix-based EC to optimize the TMRP model. Moreover, we
consult tour companies to get information of tour group types.
Tab I shows the details of the tour group information. Figure 1
illustrates the result of the optimized route of 30 tour groups.
Figure 2 shows the optimization process of matrix-based DE.

V. CONCLUSION

In this paper, we proposed a model regarding tour multiple-
route planning. The model considers numerous real-world
constraints. To optimize this model, we propose a matrix-based
differential evolution method (inspired by matrix-based EC).
The numerical evaluation results illustrate that matrix-based
DE can optimize the proposed model effectively.
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