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Abstract—Graph learning is crucial for extracting meaningful
information from graph-structured data, enabling effective so-
lutions to various downstream tasks. However, existing methods
for solving downstream graph learning tasks often rely on the
availability of the graph structure, which may not always be
accessible in real-world applications. To overcome this limitation,
recent approaches have introduced exploratory learning tech-
niques, which aim to tackle graph learning tasks on graphs with
unknown topology. In this article, we provide a comprehensive
overview of exploratory graph learning applied to two widely
studied graph learning tasks: 1) influence maximization and 2)
community detection. We delve into the problem formulation of
both tasks concerning graphs with unknown topological infor-
mation. Additionally, we explore the application of exploratory
learning techniques to address these problems effectively.

Index Terms—Community detection, exploratory learning,
graph learning, influence maximization, unknown topology.

I. INTRODUCTION

Graph learning is a fundamental technique for acquiring
node or graph embeddings, while serving as a crucial tool
for solving diverse downstream tasks on graphs, such as node
classification [1], link prediction [2], influence maximization
[3]–[5], and community detection [6]–[8]. The effectiveness
of graph learning techniques relies heavily on the inherent
structure of the underlying graph. For instance, connectivity
information plays a vital role in extracting node embeddings,
as interconnected nodes tend to share similar properties. By
leveraging such embeddings, downstream tasks can be effi-
ciently accomplished, leading to the improved overall perfor-
mance.

Meanwhile, in real-world scenarios, complete access to the
graph structure is often impractical, making existing graph
learning methods ineffective in the absence of essential topol-
ogy information. While one could consider investing additional
efforts to uncover the entire graph structure before downstream
applications, the process of collecting complete topological
information proves to be prohibitively expensive and labor-
intensive [9]. Consequently, this limitation has prompted the
development of alternative approaches for addressing graph
learning tasks in rather more feasible scenarios where the
graph structure is incomplete or entirely unavailable.

The so-called exploratory learning has garnered significant
attention to solve graph learning tasks in situations where the
topological information of the underlying graph is unknown.
This technique involves iteratively retrieving the neighbors of
queried nodes within a predetermined query budget. Graph
learning methods are then applied to accomplish the down-
stream tasks of interest with the help of the subgraph explored
through these node queries, which serves as a surrogate for the
underlying graph. By employing this node querying process,
exploratory learning effectively overcomes the challenge of
missing topology information, rendering it a valuable and
effective strategy for graph learning in such situations.

Recent studies have shown that exploratory learning is
a promising approach for tackling various graph learning
tasks where the underlying topology information is unknown.
Notably, exploratory learning has been applied to tasks such
as influence maximization [10]–[13] and community detection
[17], [18] when easy-to-collect node features are assumed
to be available. First, influence maximization based on ex-
ploratory learning aims to identify a set of seed nodes from
an explored subgraph that is expected to be as influential as the
global optimal seed set, leveraging node features to enhance
the identification of influential seed nodes. Second, community
detection based on exploratory learning involves systematic
exploration of multiple subgraphs using node queries to ap-
proximate the underlying graph structure. Leveraging node
features enables to iteratively detect the community structure
and aids to select more influential nodes to be queried.
Consequently, this process continuously refines the outcome
of community detection as the resulting subgraphs grow.

II. BASIC SETTINGS AND ASSUMPTIONS

Let us denote an underlying true graph, which is initially
unavailable, as G = (V, E), where V is the set of n nodes
and E is the set of m edges. The graph G is assumed to be an
undirected unweighted attributed graph without self-edges and
repeated edges, having collectible node metadata (i.e., node
features) X ∈ Rn×d, where d is the dimension of each feature
vector.

We assume a budget T of node queries. Upon querying a
single node vt∈[0,T−1], we are able to discover its neighbors,
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denoted as NG (vt), and expand the observable subgraph
accordingly. Let us denote the set of explored edges after t
queries as Et. Specifically, during the (t + 1)-th node query,
we choose a node vt from V to expand and update the
set of explored edges Et+1 = Et ∪ E (NG (vt) , vt), where
E (NG (vt) , vt) is a set of all edges to which each node in
NG (vt) and node vt are incident. We also denote a subgraph
and an inferred graph as Gt+1 = (Vt+1, Et+1) and G(t+1) =
(V, E(t+1)), respectively, where Vt+1 = Vt ∪ NG (vt) ∪ vt,
E(t+1) = Et+1∪E ′

t+1, and E ′
t+1 is the inferred edges based on

Et+1. Note that we can expand multiple subgraphs by selecting
a queried node that is not connected to the currently explored
subgraph.

III. REVIEW ON GRAPH LEARNING TASKS WITH
EXPLORATORY LEARNING

A. Problem Formulations

1) Exploratory learning-aided influence maximization: Let
f (S) denote the expected number of influenced nodes with
the seed set S ⊆ Vt. The objective function is formulated as:

(G∗
T , S

∗) = argmax
GT,S⊆VT,|S|=k

f (S) , (1)

where k is the number of seed nodes.
2) Exploratory learning-aided community detection: Let F

denote a non-negative weight affiliation matrix representing
node-level community-affiliation embeddings. The objective
function is formulated as:

(F∗,Q∗
T ) = argmax

F≥0,QT⊂V
P
(
G(T ),X |F

)
, (2)

where QT is the set of queried nodes and P
(
G(T ),X |F

)
is the

likelihood to evaluate which affiliation embedding matrix F
would make the given inferred graph G(T ) and node metadata
X more probable.

B. Influence Maximization Using Exploratory Learning

Influence maximization using exploratory learning refers to
the process of exploring subgraph GT as a surrogate of the
underlying graph by identifying a set of node queries. The
objective is to maximize the spread of influence on G to
identify the optimal seed nodes S∗ from GT . The schematic
overview of influence maximization using exploratory learning
is illustrated in Fig. 1.

There have been several attempts to address the influence
maximization problem in graphs with unknown topology using
exploratory learning. Following the concept of active learning
for classification [19], HEALER [20] was devised to address
the dynamic influence maximization across a series of rounds,
involving edge information collection after each round. The
concept of exploratory influence maximization was introduced
in [10] by providing a solution for querying individual nodes
to retrieve their neighbors, leading to the construction of
a subgraph Gt. As follow-up studies, CHANGE [11] and
Geometric-DQN [12] investigated the process of graph ex-
ploration node queries, utilizing the friendship paradox and

Fig. 1. The schematic overview of influence maximization using exploratory
learning. (a) Underlying true graph G. (b) Subgraph GT . (c) Seed nodes and
influenced nodes.

patterns learned from a set of analogous graphs, respectively. A
theoretical analysis on the performance of influence maximiza-
tion was conducted in settings where a subgraph is retrieved
via random node sampling [15], [16].

Now, let us focus on reviewing IM-META [13], pioneer
work on leveraging the collected node metadata to aid the
discovery of influential seed nodes, utilizing easy-to-collect
node metadata. IM-META comprises two separate phases:
graph exploration and seed set selection. During the graph
exploration phase, we iteratively perform the following three
steps. In Step 1, the relationship between node metadata
in X and edges in the explored subgraph Gt is learned
using a Siamese neural network model [14]. Specifically, the
connectivity probabilities for unexplored edges are inferred by
learning the similarity between nodes based on the currently
explored edges retrieved from node queries and node metadata.
The connectivity information can be learned by accurately cap-
turing the homophily effect, which reveals the tendency of an
individual node to associate with similar other nodes. In Step
2, a reinforced weighted graph is created by selecting a limited
number of confidence edges whose edge probabilities exceeds
a certain threshold. This edge selection can not only diminish
noisy edges in the subsequent processes but also reduce the
the computational complexity. In Step 3, a topology-aware
ranking strategy is employed for query node selection. This is
designed by measuring balances between the degree centrality
of a target node and its geodesic distance to potential seeds.
Then, the subgraph Gt is updated accordingly. This procedure
is repeated until the T -th node query is reached. During the
seed set selection phase, influential seed nodes are chosen
using the greedy influence maximization algorithm [3].

C. Community Detection Using Exploratory Learning

Community detection using exploratory learning is a pro-
cess involving iterative community detection and node query
selection to explore (potentially multiple) subgraphs. The
schematic overview of exploratory community detection is
illustrated in Fig. 2.

As the first attempt, META-CODE [17] was first proposed
to address community detection in graphs with unknown topol-
ogy, utilizing easy-to-collect node metadata. META-CODE
consists of three stages. In the first stage, an initial graph
is inferred solely based on node metadata. In the second
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Fig. 2. The schematic overview of community detection using exploratory
learning, where the first and second iterations are executed.

stage, graph representation learning based on a graph neural
network (GNN) model [21] is performed to acquire commu-
nity embeddings F, by leveraging the node metadata and the
inferred topological structure. In the third stage, a node to be
queried aiming at faster graph exploration is selected based
on two criteria: (i) the nodes lie within areas of overlapping
communities and (ii) the selected nodes are distributed across
diverse communities. Then, the inferred edges connected to the
queried node are replaced with the explored edges Et, and new
community-affiliation embeddings are generated by GNN-aid
representation learning. This procedure is repeated until the T -
th node query is reached. As a result, META-CODE provides
increasingly improved community detection outcomes through
exploratory learning.

Built upon the idea of META-CODE, a follow-up study
[18] made full use of the explored edges for community
detection in topologically unknown graphs. After exploring
the neighbors of the queried node, connections between nodes
in the unexplored portion of the underlying graph are further
inferred by learning the connectivity information from the
explored edges via a Siamese neural network model. The more
accurate inferred graph G(t), which incorporates the explored
and inferred edges, is then used for community detection. This
additional graph inference step enables to enhance the accu-
racy of community detection through exploratory learning.

IV. CONCLUSION

In this article, we have presented a comprehensive review
of exploratory learning approaches for influence maximization
and community detection in graphs with unknown topology.
We summarized the key findings and contributions of ex-
ploratory learning in effectively solving influence maximiza-
tion and community detection problems in such challenging
yet realistic scenarios.
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