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Abstract—With the continuous evolution of communication
technology, unmanned aerial vehicles (UAVs) are considered
pivotal in 6G communications. As the number of tasks steadily
increases, simultaneous path planning for multiple UAVs has
emerged as an important research topic. The multi-path planning
problem for UAVs is essentially a typical instance of the multiple
traveling salesman problem (MTSP). Since the MTSP problem
is NP-hard, the effect of using heuristic optimization algorithms
will be significantly better than traditional optimization methods.
To optimize the information collection process, we employ the K-
means clustering method to generate relay nodes. Subsequently,
a multi-UAV path planning model is constructed, and a genetic
algorithm (GA) is employed to find the optimal solution. Finally,
the effectiveness of the proposed GA in tackling the MTSP
problem is validated through comprehensive experiments under
diverse scenarios.

Index Terms—Genetic algorithm, multiple traveling salesman
problem, unmanned aerial vehicle

I. INTRODUCTION

With the onset of the 6G era, unmanned aerial vehicle
(UAV) technology has gained extensive utilization within
communication systems across diverse operational contexts,
owing to its exceptional mobility, adaptable flexibility, and low
cost [1]. Notably, in the scenarios of information collection,
the inherent flexibility of UAVs ensures efficient and swift
task completion [2]. Simultaneously, as the volume of tasks
increases, ensuring the minimum distance while accomplishing
path planning for multiple UAVs has become a prominent
research challenge [3]. To Address this concern, the path
planning for multiple UAVs can be conceptualized as the
multiple traveling salesman problem (MTSP) [4], which is
a well-known category of NP-hard problems. [5]. For NP-
hard problems, it is difficult to solve them using traditional
mathematical calculation methods [6].

For such a problem, several researchers have applied com-
putational intelligence (CI) to solve it. Chen et al. [7] proposed
an improved genetic algorithm (IGA) and an ant colony algo-
rithm based on particle swarm optimization in parallel to solve
the UAV path planning problem. Zhang et al. [8] proposed
a state transition simulated annealing algorithm (STASA) to
solve the multiple traveling salesman problem. In [9], the
authors proposed a new hybrid algorithm called AC2OptGA,
which combines the ant colony algorithm, genetic algorithm,
and 2-opt algorithm to solve the MTSP problem.

In this paper, considering the uncertainty of sensor number
and their locations, we cluster the sensors based on the K-
means clustering algorithm and locate a relay node at each

cluster center, which collects information from nearby sensors.
Then, UAVs only need to visit the relay nodes to complete
information collection where the path planning for the multiple
UAVs can be modeled by MTSP. Regarding such highly diffi-
cult computational challenges posed by MTSP, computational
intelligence emerges as a promising solution. In response, we
introduced a genetic algorithm (GA) that adeptly facilitates
path planning for multiple UAVs. Our proposed algorithm
takes a balance between ensuring algorithmic computational
efficiency and yielding reasonable path-planning outcomes.

II. MULTI-UAV PATH PLANNING

A. Path Planning Model

Due to high energy consumption of the UAVs on flying, the
primary goal of multiple UAVs in the information collection
process is to shorten the flight distance as much as possible.
Suppose that there are number Ns of sensors uniformly
distributed within a range of R×R m2 and they need to send
their sensing information. We first adopt K-means clustering
method [10] to select Nr points at which relay nodes are
located to collect information from nearby sensors. Then, Nu

UAVs need to visit those Nr relay nodes only to hover and
obtain sensing information.

Each UAV path starts from the hub station, which is located
at the center of R × R area and is denoted by index t0,
and ends at the same location. Let Tj denote the number of
relay nodes that the jth UAV should visit where j ∈ [1, Nu].
If the UAVs do not visit overlapped relay nodes, we have∑Nu

j=1 Tj = Nr. The objective of path planning is to minimize
the cumulative distance traveled by all the UAVs while we
employ GA to solve the corresponding optimization problem.
In the GA, each individual within the population contains the
path planning solution for all the UAVs and has a vector form
of length Nr + Nu. Let the vector be expressed by x⃗ =
[t1, t2, . . . , tNr

, T1, T2, . . . , TNu
], where ti for 1 ≤ i ≤ Nr

could be any relay node’s index. For the simplicity of later
description, we define sj =

∑j
i=1 Ti. Our path planning x⃗

indicates that UAV j for 1 ≤ j ≤ Nu sequentially visits the
relay nodes with indexes tsj−Tj+1, ...., tsj . If d(i, k) denotes
the distance between the two relay nodes i and k, the flight
distance of UAV j can be obtained as

Dj = d(t0, tsj−Tj+1)+

tsj−1∑
i=tsj−Tj+1

d(ti, ti+1)+d(tsj , t0). (1)
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Fig. 1. Graphical explanation of each individual.

Consequently, the objective function could be expressed as

min
x⃗

f(x⃗) =

Nu∑
j=1

Dj

s.t. C1 :

Nu∑
j=1

Tj = Nr,

C2 : Tj > 0, 1 ≤ j ≤ Nu,

C3 : t1 ̸= t2 ̸= · · · ≠ tNr
.

(2)

B. The Proposed Genetic Algorithm

Initialization: The optimization goal of this paper is to
minimize the total path length of all the UAVs. We generate a
population of M individuals according to the optimal objec-
tive. Each individual vector x⃗ has Nr+Nu genes (or elements),
representing a path-planning solution. Individuals need to go
through selection, crossover, and mutation processes separately
to calculate the fitness value (or equivalently the total path
length). We read each individual by two parts based on the
different contents. As shown in Fig. 1, the first Nr genes,
denoted by part A, represent the relay node indexes, while the
last Nu genes, denoted by part B, represent the number of
relay nodes that each UAV visits. In the process of algorithm
evolution, these two parts evolve simultaneously.

Selection: We use the roulette wheel operator for the
selection process. Selection is the process of selecting better
individuals from the old population to form a new population.
According to the objective function, if an individual’s fitness
value is smaller, the probability of being selected is larger.
We use fn to represent the fitness value of individual n for
1 ≤ n ≤ M , and the probability of the individual n being
selected can be given by (3).

Pn =
fn∑M
k=1 fk

. (3)

Then, a random number Rn is generated from [0, 1] in a
uniform manner for individual n. If Rn is smaller than Pn,
individual n is selected. We use the individuals selected in the
above way to replace the original individuals in the population
and complete the selection process.

Crossover: The crossover process uses an order crossover
operator. Given a random crossover probability Pc, if a newly
generated random number Rn of individual n is less than
Pc, the individual is selected to participate in the crossover
process. Each individual’s A and B parts will be crossed
simultaneously but in different ways. The crossover process
is shown in Fig. 2.

Fig. 2. Crossover process

Fig. 3. Mutation process

For part A, each two parent individuals are paired, and two
crossover points L1 and L2 for 1 ≤ L1 < L2 ≤ Nr are
randomly selected for each pair of parent individuals. First,
we take out the genes between the L1 and L2 of the parent a
and replace them in the corresponding position of the offspring
a. Then, sort the remaining genes in parent a according to the
order of the relay node index in the gene of parent b. Finally,
replace the sorted genes in the remaining gene positions in the
offspring a′.

The generation process for offspring b′ is similar to that of
offspring a′. Therefore, the offspring a′ is based on the parent
a, and the offspring b′ is generated based on the gene sequence
of the parent b.

For part B, we just need to copy the parent’s gene se-
quence to the offspring’s corresponding position. Typically,
two parents produce two different offspring to increase the
randomness of the evolutionary process. After the crossover
process, the offspring still satisfies the constraints C1 and C3.

Mutation: The central aspect of the mutation process is
the mutation probability Pm. The determination of individ-
ual participation in the mutation process is similar to that
of the crossover process. Determine which individuals will
participate in the mutation process by comparing a randomly
generated number Rn and Pm. Part A and Part B use the same
mutation method.

For Part A, we randomly select two different numbers I1
and I2 from [1, Nr] as the genes of the individual participating
in the mutation process. Then, we exchange the relay node
index in these two genes.

The mutation process of Part B is different from Part A in
that the selection range of the genes involved in the mutation
is [1, Nu]. Other mutation steps are identical to that of part A.
An example of one mutation process is shown in Fig. 3.

After the above optimization process, the minimized multi-
UAV path planning solution that satisfies all the constraints in
the objective function will be obtained.

III. EXPERIMENTAL RESULTS

A. Experimental Setting

In this subsection, we describe the experimental settings and
the parameter configurations employed.
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TABLE I
THE PARAMETER SETTINGS

Parameter Value
Number of sensors Ns 1000

Number of relay nodes Nr 30, 40
Number of UAVs Nu 3, 4

Sensor range R 104 m
Crossover probability Pc 0.3
Mutation probability Pm 0.1
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Fig. 4. Multi-path planning results for different numbers of UAVs.

As the relay nodes are generated based on the clustering of
a large number of sensors, to obtain a statistically meaningful
result, we generate 1000 sensors that are randomly distributed
in the R×R area where R = 104 m.

Firstly, by applying the k-means clustering method, we
cluster the generated sensors. Then, multi-UAV path planning
experiments are conducted based on the obtained locations of
relay nodes when the numbers of UAVs and relay nodes are
given. The precise parameters are outlined in Table I.

B. Discussion on the Results

Fig. 4 shows the path planning results for different numbers
of UAVs. In the figure, sensors of the same color form one
cluster while those relay nodes are denoted by blue color.
Lines of different colors represent different flight paths of
different UAVs. The left figure shows the path planning result
obtained with 1800 generations when Nu = 3 and Nr = 30,
while the right figure shows the result obtained with 3000
generations when Nu = 4 and Nr = 40. The experimental
results show that the algorithm we proposed can find a
reasonable path solution for UAVs for different numbers of
UAVs and relay nodes.

Fig. 5 shows the path planning results as the generation
goes over. The yellow line represents the optimal total path
length, while the blue line represents the average total path
length. Through comparing the experimental outcomes under
different numbers of UAVs and relay nodes, we can conclude
that the proposed algorithm is able to reach the minimum total
path length while ensuring rational routes: no crosses among
different UAV paths and satisfaction with the constraints.

IV. CONCLUSION

In this paper, we proposed a genetic algorithm to solve the
multi-UAV path planning problem, which can be viewed as a
typical MTSP. To meet the tough constraints raised by MTSP,
we divided the genes in each individual in the GA population

Fig. 5. Multi-path planning results over generations

into two parts according to the different purposes. In particular,
those two parts have different crossover processes in the
evolutionary process. Consequently, our proposed algorithm
is able to minimize the total flight path length of multiple
UAVs subject to constraints. Experimental results show that
our proposed algorithm can obtain the optimal solution while
satisfying the constraints.

In future work, we will consider the inherent characteristics
of UAVs, such as battery capacity and flight costs. This will
lead to a more comprehensively exploring the multi-UAV path
planning problem.

ACKNOWLEDGMENT

This work is supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2022R1F1A1071093).

REFERENCES

[1] B. Li, Z. Fei, and Y. Zhang, “Uav communications for 5g and beyond:
Recent advances and future trends,” IEEE Internet of Things Journal,
vol. 6, pp. 2241–2263, Dec. 2018.

[2] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “Multi-uav path
planning for wireless data harvesting with deep reinforcement learning,”
IEEE Open Journal of the Communications Society, vol. 2, pp. 1171–
1187, May 2021.

[3] W. He, X. Qi, and L. Liu, “A novel hybrid particle swarm optimization
for multi-uav cooperate path planning,” Applied Intelligence, vol. 51,
pp. 7350–7364, Mar. 2021.

[4] O. Cheikhrouhou and I. Khoufi, “A comprehensive survey on the
multiple traveling salesman problem: Applications, approaches and
taxonomy,” Computer Science Review, vol. 40, p. 100369, May 2021.

[5] C. H. Papadimitriou, “The euclidean travelling salesman problem is np-
complete,” Theoretical computer science, vol. 4, pp. 237–244, Jun. 1977.

[6] Z.-H. Zhan, J. Zhang, Y. Lin, J.-Y. Li, T. Huang, X.-Q. Guo, F.-F.
Wei, S. Kwong, X.-Y. Zhang, and R. You, “Matrix-based evolutionary
computation,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 6, pp. 315–328, Jan. 2021.

[7] J. Chen, F. Ye, and Y. Li, “Travelling salesman problem for uav path
planning with two parallel optimization algorithms,” in 2017 progress in
electromagnetics research symposium-fall (PIERS-FALL), pp. 832–837,
Nov. 2017.

[8] Y. Zhang, X. Han, Y. Dong, J. Xie, G. Xie, and X. Xu, “A novel
state transition simulated annealing algorithm for the multiple traveling
salesmen problem,” The Journal of Supercomputing, vol. 77, pp. 11827–
11852, Mar. 2021.

[9] Y. Harrath, A. F. Salman, A. Alqaddoumi, H. Hasan, and A. Radhi,
“A novel hybrid approach for solving the multiple traveling salesmen
problem,” Arab Journal of Basic and applied sciences, vol. 26, pp. 103–
112, Feb. 2019.

[10] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the royal statistical society. series c
(applied statistics), vol. 28, no. 1, pp. 100–108, 1979.

920


