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Abstract—Differential evolution (DE) is fully validated as a
feasible algorithm for solving optimization problems. Addition-
ally, for the complex optimization problems with high dimen-
sion, the traditional DE suffers from slow convergence. This
paper proposes an enhanced DE algorithm that combines group
learning and elite learning. The proposed algorithm improves the
global search capability while guaranteeing a certain convergence
speed. Through extensive experiments we confirm the superior
competitiveness of the proposed DE algorithm compared to the
traditional ones.

Index Terms—Differential evolution, group learning, elite
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I. INTRODUCTION

In the past few decades, researchers from both academic
and industry have shown considerable interest in differential
evolution (DE) due to its advantages of being easily under-
standable and operationally simple [1]. Nowadays, DE has
found extensive applications in diverse areas, such as industrial
applications or routine daily problem-solving scenarios [2].
However, the optimization problems raised from industry and
academic become more complicated [3]. With the gradual
increase in the complexity of optimization problems, the chal-
lenges brought by high-dimension issues cannot be ignored,
especially in terms of algorithm convergence speed [4].

To address such problems, several researchers have started
to employ distributed evolutionary algorithms. Zhan et al.
[5] introduced an adaptive distributed differential evolution
algorithm (ADDE). This approach accelerates convergence by
facilitating the simultaneous evolution of three populations
possessing distinct characteristics. In [6], authors proposed a
distributed genetic algorithm (DGA). This approach enhances
the algorithm’s convergence speed by leveraging multiple
processors to execute the evolutionary process concurrently.

Notably, the impact of the mutation process within the
DE algorithm on the overall convergence speed is more
pronounced compared to other operators [7]. By refining the
mutation process, individuals are guided to learn from superior
individuals and better-performing groups. This enhancement
effectively mitigates the risk of the algorithm becoming
trapped in local optima, thereby significantly bolstering the
algorithm’s overall convergence speed. In response, this paper
introduces an enhanced DE algorithm with group learning
and elite learning named differential evolution enhanced by
combining group learning and elite learning (GEDE).

II. DIFFERENTIAL EVOLUTION ENHANCED BY
COMBINING GROUP LEARNING AND ELITE LEARNING

A. Differential Evolution (DE)

DE is a heuristic population-based intelligence algorithm
originating from the genetic algorithms domain, wherein it-
erative retention of superior individuals culminates in the
attainment of an optimal solution [8]. In DE, individuals
of size N constitute a population, and an individual has
dimension D, which can be expressed as

xi,g = {xi,g,1, xi,g,2, ..., xi,g,D}, (1)

where i is the individual index from [1, 2, ..., N ]; g is the
number of generations; xi,g represents the ith individual in
the gth generation.

Initial population is obtained by

xi,j,0 = Lj + rand(0, 1) · (Uj − Lj) (2)

where Uj and Lj are the upper and lower bounds of the search
range in dimension j, respectively; rand(0, 1) is a random
number generated uniformly in [0, 1].

Subsequently, DE conducts a comprehensive traversal en-
compassing mutation, crossover, and selection operations.

a) Mutation: The target vectors are operated with the
difference vectors according to specific rules to produce new
individual vectors with global search capability in each genera-
tion. Several common mutation strategies are listed as follows.

• DE/rand/1:

vi,g = xr1,g + F · (xr2,g − xr3,g) (3)

• DE/best/1:

vi,g = xbest,g + F · (xr1,g − xr2,g) (4)

• DE/rand-to-best/1:

vi,g = xr1,g+F ·(xbest,g−xr1,g)+F ·(xr2,g−xr3,g) (5)

• DE/current-to-rand/1:

vi,g = xi,g +F · (xr1,g − xi,g) +F · (xr2,g − xr3,g) (6)

• DE/current-to-best/1:

vi,g = xi,g+F · (xbest,g−xi,g)+F · (xr1,g−xr2,g) (7)

• DE/rand/2:

vi,g = xr1,g+F · (xr2,g−xr3,g+F · (xr4,g−xr5,g) (8)
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• DE/best/2:

vi,g = xbest,g+F ·(xr1,g−xr2,g)+F ·(xr3,g−xr4,g) (9)

where vi,g is the gth generation of individual after mutation,
which is the mutant vector or donor vector; xbest,g is the
gth generation of individual characterized by the best fitness
value; indices r1, r2, r3, r4, and r5 correspond to unique and
randomly selected individuals within the sampled population;
F is the scale factor used to control the difference vector.

b) Crossover: This operation randomly crosses vi,j,g and
xi,j,g according to a certain probability to make individuals
more diverse. This probability is called crossover rate (CR)
and is usually set between [0.3, 0.9].

ui,j,g =

{
vi,j,g, if rand(0, 1) ≤ CR or j = jrand

xi,j,g, otherwise
(10)

where jrand belongs to {1, 2, ..., D} to ensure that after the
crossover, there must be components of the mutant vector vi,g .

c) Selection: By utilizing the fitness values, better indi-
viduals are selected between ui,g and xi,g , i.e.,

xi,g+1 =

{
ui,g, if f(ui,g) ≤ f(xi,g)

xi,g, otherwise
(11)

where f(x) is the fitness value associated with the variable x.

B. Group Learning Approaches

A suitable choice of strategies for different mutations can
enhance the traditional DE. Based on DE/rand-to-best/1, we
modify the vector of optimal fitness individuals xbest,g to
take individuals ranked by 20% fitness values and calculate
the mean denoted as xmean,g at each generation. The vector
distance from xr1,g to xmean,g is controlled with F . The
expression of the proposed operation is expressed as

vi,g = xr1,g+F ·(xmean,g−xr1,g)+F ·(xr2,g−xr3,g). (12)

The proposed DE with Group Learning (GDE) may have
better exploitation capability than the ones with randomly
selected individuals. Also, GDE has better global search
capability than the best individual influence scheme.

C. Elite Learning Approaches

The convergence speed of an algorithm is an essential
metric when evaluating an algorithm, and our approach of
incorporating elite learning into GDE aims to improve the
convergence speed further. It is notable that the algorithm’s
complexity does not increase since the individuals in the
population are already sorted according to their fitness values
in the group learning operation.

Our proposed GEDE algorithm is to randomly select indi-
viduals with better fitness values than the target individuals
xi,g as elite individuals denoted by xelite,g . The expression of
the proposed operation is expressed as

vi,g =xr1,g + F · (xmean,g − xr1,g) + F · (xr2,g − xr3,g)

+ Fe · (xelite,g − xr1,g). (13)

TABLE I: simulation parameters and values

Parameters Values
Population size, N 100

Variable dimension, D 30
Scale factor, F 0.5

Crossover rate, CR 0.6
Enhanced scale factor, Fe 0.1

The elite learning part of GEDE has a better ability to
detach from the local optimum compared to the best individual
influence scheme, for which we set Fe to 0.1.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

Typically, the efficacy of an algorithm is assessed using
designated test functions. In this study, we evaluated our
algorithm using four specific functions: Rastrigin, Weierstrass,
Griewank, and Happy Cat. Considering the fairness of the
comparison algorithm, we use the 104 × D maximal fitness
evaluations (maxFEs), in which D is the dimension of the
selected function.

The formulas for the selected test functions are listed as
follows.

• Rastrigin Function:

f1(x) = 10d+

d∑
i=1

[
x2
i − 10 cos (2πxi)

]
(14)

• Alpine N.1 Function:

f2(x) =

d∑
i=1

|xisin(xi) + 0.1xi| (15)

• Griewank Function:

f3(x) =

d∑
i=1

x2
i

4000
−

d∏
i=1

cos

(
xi√
i

)
+ 1 (16)

• Happy Cat Function:

f4(x) =
[(
||x||2 − d

)2]α
+

1

d

(
1

2
||x||2 +

d∑
i=1

xi

)
+

1

2

(17)
We proceed to compare the proposed algorithms, namely

GDE and GEDE, against the DE of traditional muta-
tion strategies such as DE/rand/1, DE/best/1, DE/rand-to-
best/1, DE/current-to-rand/1, DE/current-to-best/1, DE/rand/2,
DE/best/2. To ensure the robustness of our results, we evalu-
ated the above test function 20 times for each algorithm and
took the expectation as the result. Table I shows some of the
primary parameters used in the experiments.

B. Comparative Analysis with Other DEs

We compare the algorithms named GDE and GEDE pro-
posed in this paper with the traditional DE algorithms em-
ploying different mutation strategies. GEDE is an enhanced
algorithm that integrates elite learning into GDE. For the
results shown in Figs. 1-4, X-axis shows the fitness evaluations
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Fig. 1: Fitness values over FE. (Rastrigin) Fig. 2: Fitness values over FE. (Alpine N.1.)

Fig. 3: Fitness values over FE. (Griewank) Fig. 4: Fitness values over FE. (Happy Cat)

(FEs) value of the number of fitness functions used, while Y-
axis shows the corresponding fitness values. As the generations
proceed, each algorithm converges to its optimal solution.

The performance of our proposed algorithm is depicted by
the distinctive magenta line. Each algorithm uses the param-
eters in Table I. For the Griewank and Happy Cat functions,
the proposed algorithms have the fastest convergence rate and
reach the global optimal solution with the same maxFEs con-
dition. Regarding the Rastrigin and Alpine N.1 functions, our
proposed algorithms demonstrate the capability to attain the
utmost precise optimal solution within the stipulated maxFEs.

IV. CONCLUSION

In this paper, for the mutation process of DE, we propose
an enhanced differential evolution algorithm that combines
group learning and elite learning. The GEDE algorithm is
based on the randomly selected individual and the best indi-
vidual influence scheme. While keeping the factors constant,
comprehensive experiments show that GEDE has better global
search capability and faster convergence than existing DEs. In
future work, We plan to extend our algorithm to be matrix-
based DE and apply it to a broader range of high-dimensional
optimization problems.

ACKNOWLEDGMENT

This work is supported by the Institute of Information and
Communications Technology Planning and Evaluation (IITP)
Grant funded by the Korea Government (MSIT, Development
of Technology for Securing and Supplying Radio Resources)
under Grant 2021-0-00092.

REFERENCES

[1] K. R. Opara and J. Arabas, “Differential evolution: A survey of theoretical
analyses,” Swarm and evolutionary computation, vol. 44, pp. 546–558,
Feb. 2019.

[2] M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, et al., “Dif-
ferential evolution: A review of more than two decades of research,”
Engineering Applications of Artificial Intelligence, vol. 90, p. 103479,
Apr. 2020.

[3] W. Deng, J. Xu, Y. Song, and H. Zhao, “Differential evolution algorithm
with wavelet basis function and optimal mutation strategy for complex
optimization problem,” Applied Soft Computing, vol. 100, p. 106724, Mar.
2021.

[4] Z.-H. Zhan, J. Zhang, Y. Lin, J.-Y. Li, T. Huang, X.-Q. Guo, F.-F.
Wei, S. Kwong, X.-Y. Zhang, and R. You, “Matrix-based evolutionary
computation,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 6, pp. 315–328, Jan. 2021.

[5] Z.-H. Zhan, Z.-J. Wang, H. Jin, and J. Zhang, “Adaptive distributed dif-
ferential evolution,” IEEE transactions on cybernetics, vol. 50, pp. 4633–
4647, Oct. 2019.

[6] Z.-J. Wang, Z.-H. Zhan, and J. Zhang, “Solving the energy efficient cover-
age problem in wireless sensor networks: A distributed genetic algorithm
approach with hierarchical fitness evaluation,” Energies, vol. 11, p. 3526,
Dec. 2018.

[7] A. W. Mohamed and A. K. Mohamed, “Adaptive guided differential
evolution algorithm with novel mutation for numerical optimization,”
International Journal of Machine Learning and Cybernetics, vol. 10,
pp. 253–277, Aug. 2019.

[8] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, pp. 341–359, Dec. 1997.

923


