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Abstract—In this paper, we propose a fingerprinting-based
localization method in the 5G millimeter-wave (mmWave) small-
cell channel. The proposed method uses measurements that do
not require additional processes to collect, such as synchro-
nization signal-reference signal received power (SS-RSRP) used
for synchronization between the user and base station in 5G
communication and transmitter (TX) beam ID data as fingerprint
data. With the collected data and a deep neural network (DNN)-
based pattern matching model, we evaluate the localization
performance in 5G small-cell environments. As a result, the
proposed method achieves localization root-mean-squared-error
(RMSE) of 2.76m, which can be applicable to the actual small-
cell environment.

I. INTRODUCTION

5G communication uses millimeter-wave (mmWave) signals
in the 20-100 GHz frequency band to support high data rate
and low transmission latency requirements compared to 4G
LTE communication [1]. However, Due to the high carrier
frequency band characteristics, large path losses occur, which
leads to narrower coverage compared to long-term evolution
(LTE) communications. Therefore, 5G mmWave communi-
cations are generally used in small-cells within a 250-meter
radius. In particular, the high frequency and wide bandwidth
characteristics of mmWave signals enable precise localization
in small-cell environments. Thus, various 5G signal-based
precise localization research has been studied actively [2], [3].

Localization technologies are composed of geometric and
fingerprint methods. Geometric localization typically uses
methods such as trilateration and triangulation. The authors
in [4]–[6] propose a localization method that utilizes various
parameters (e.g. time of arrival (ToA), time difference of
arrival (TDoA), angle of arrival (AoA)) measured in 5G
NR signals. However, traditional methods have localization
performance uncertainty due to none-light-of-sight (NLOS)
transmission. In contrast, the fingerprint methods focus on the
features of the 5G signal for localization. The methods use
a database constructed by measurements such as the received
signal strength indicator (RSSI), and channel state information
(CSI) [7], [8]. Among these, CSI-based localization algorithms
have attracted relatively because CSI can represent detailed
channel information such as multipath effects [9], [10].

Nevertheless, most wireless devices still find it difficult
to collect accurate information for CSI in the real world
functionally. Hence, we propose a localization method to avoid
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Fig. 1. Fingerprinting localization scenario in 5G small-cell

this problem using the synchronization signal-reference signal
received power (SS-RSRP) and transmitter (Tx) beam ID in
5G communication. The SS-RSRP is the information reported
to the base station when the secondary synchronization signal
(SSS) is transmitted. Thus, it does not require any additional
process to measure the data. Additionally, simulations demon-
strate that precise localization is possible in 5G mmWave
small-cell environments.

II. CHANNEL ENVIRONMENT

In this section, we present the cluster delay line (CDL),
one of the 5G NR-based channels used for simulation shown
in Fig. 1. The CDL channel model is described in the third
generation partnership project (3GPP) technical report (TR)
38.901 and uses a maximum bandwidth of 2 GHz within the
0.5-100 GHz band [11]. Wireless signals in the real world
are multipath propagation due to scattering, diffraction, and
reflection from obstacles. The multipath signals are refracted
by scatterers and distributed into subpath. Moreover, subpath
can be clustered around specific time delay and angular spread.
Fig. 2 shows an example of a simple CDL channel, where two
clusters have distributed with sub-paths and the power profile
regarding impulse response.

MATLAB provides a 5G toolbox to create the channel
environment for 5G NR communication systems [12]. The
simulations use a CDL model that is similar to the real-world
channel using MATLAB. Furthermore, the simulation and
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Fig. 2. An example of CDL with two clusters: θis represent the angle of
departure (AoD) each cluster for the LOS departure direction.

localization performance will be compared by implementing
a scattering multiple-input multiple-output (MIMO) channel
provided by MATLAB [13].

Scattering-MIMO is designed in a propagation channel
where the signal radiates from the Tx array and is reflected
from scatterers to the Rx array. With the two channel models,
the received signals can get as follows.

r(t) = Wr(HWts(t) + n(t)), (1)

where r(t) is the received signal, Wr is the weight value for
the steering vector for the Rx beam, and Wt is the weight
value for the steering vector for the Tx beam. The H is the
channel matrix, and n(t) is the channel noise value, which
assumes white Gaussian noise ∼ N (0,1) whose mean is 0
and variance is 1. In this simulation, s(t) is a synchronization
signal block (SSB) to collect the SS-RSRP and Tx beam ID.

III. DNN-BASED FINGERPRINTING METHOD IN
SMALL-CELL ENVIRONMENT

In this session, we describe the method of fingerprinting
localization in small-cell environment with 5G mmWave.

A. Channel Design

We build a channel environment using MATLAB to be
similar to real-world communications. The carrier frequency
of the CDL channel is 28.5 GHz and considers a light-of-
sight (LOS) environment with 12 clusters. The angle of the
LOS signal in the subpath is the angle of the straight-line
distance between the receiver (Rx) and Tx, and the middle
angle of the NLOS cluster is set randomly according to the
Gaussian distribution ∼ N (0,1). In the scattering MIMO
channel, we set the same carrier frequency as CDL and the
number of scatterers to 5. Also, the location of each scatterer
was randomized.

B. Measurement Collection

The simulation environment is a two-dimensional environ-
ment 100 × 100m2 with 361 reference points (RPs) as Rx
and four anchors as Tx shown in Fig. 3. In addition, 30
test points (TPs) are used in the simulation evaluation. The
antenna size is 8, with 16 beams each assigned to 16 SS bus
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Fig. 3. Labeled fingerprints collected at various RPs
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Fig. 4. Labeled fingerprints collected at various RPs

signals. The SSB signal is used in 5G NR for transmit/receive
synchronization and receiving network information, as well
as being transmitted periodically. This signal is generated
with a signal block length of 64. Fingerprinting data for
localization is collected during the beam sweeping steps,
where the maximum SS-RSRP and the corresponding Tx beam
ID are measured, as shown in Fig. 4. This process is performed
for each anchor and RP. The data is gathered eight times at
each anchor and RP, and two times at TP.

C. Deep Learning Training and Testing

The DNN-based fingerprinting localization method is per-
formed in two steps: offline and online steps. In the offline
step, the data collected by the RPs and real locations input
the DNN model and construct a radio map. The online step
provides test data to the trained model to estimate the user’s
location. The DNN model is trained by matching the input
SS-RSRP and Tx beam ID to locations. The parameters of
the DNN model for training are shown in Table. I. Moreover,
before training, the SS-RSRP is normalized for enhanced
estimation accuracy. At the end of this process, the data is
scaled to the interval [0, 1].

TABLE I. Measurement campaigns parameter in DNN model

Parameter Setting

Number of hidden layers 3
Size of hidden layers 400
Activation function ReLU

Optimizer Adam
Inter reference point distance 5m
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Fig. 5. Estimated positions in CDL and scattering-MIMO channel with SS-
RSRP

IV. SIMULATION RESULTS

In this section, we present the simulation results in the
scattering-MIMO and CDL channel environments. Fig. 7
shows the overall localization performance with SS-RSRP and
Tx beam index measurements in two channel models by root-
mean-squared-error (RMSE). Fig. 5 shows the localization
performance when the fingerprint database consists of only
SS-RSRP measurements. With the use of the CDL channel and
the Scattering MIMO channel, proposed method shows RMSE
9.41m and 10.75m localization performance respectively.
Since the DNN-based localization model could not accurately
distinguish the data patterns collected from different locations,
the localization performance decreased. Fig. 6 shows the local-
ization performance when the fingerprint database consists of
both SS-RSRP and Tx beam index measurements. With the use
of the CDL channel and the Scattering MIMO channel, RMSE
2.76m and 2.83m results are confirmed, respectively. It is
confirmed that the proposed method can accurately estimate
the location, by including the angular information between
anchors and the user.

V. CONCLUSION

In this paper, we proposed a DNN-based fingerprinting
localization method in 5G mmWave small-cell environments.
Proposed method was evaluated in two 5G NR channel en-
vironment. In addition, SS-RSRP and Tx beam ID, which
do not require an additional collection process, are used
as fingerprints. Through the several simulation, we achieved
localization RMSE 2.76m in NR CDL channel. Simulation
results demonstrate that the proposed method is applicable to
the actual small cell environment. In the future, we hope that
this research will be applied to real-world 5G small cells so
that high-precision positioning results can be utilized in many
fields.
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Fig. 6. Estimated positions in CDL and scattering-MIMO channel with SS-
RSRP and Tx beam ID
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