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Abstract—Statistical and stochastic analysis based on thermo-
dynamics has been the main analysis framework for stochastic
global optimization. Recently, with the appearance of quantum
annealing or quantum tunneling algorithms for global opti-
mization, we require a new research framework for global
optimization algorithms. In this paper, we provide the analysis
for quantization-based optimization based on the Schrödinger
equation to reveal what property in quantum mechanics enables
global optimization. We present that the tunneling effect derived
by the Schrödinger equation in quantization-based optimization
enables to escape of a local minimum. Additionally, we confirm
that this tunneling effect is the same property included in
quantum mechanics-based global optimization. Experiments with
standard multi-modal benchmark functions represent that the
proposed analysis is valid.

Index Terms—Quantization, Quantum Mechanics, Optimiza-
tion, Schrödinger Equation

I. INTRODUCTION

Stochastic global optimization algorithms such as Simulated
Annealing(SA) have represented outstanding performance in
combinatorial optimization problems [1] [2] [3]. However,
when the complexity and size of a problem, such as a Traveling
Salesman Problem(TSP) involving many cities (beyond 100
cities), are significantly huge, such a conventional algorithm
shows a limitation of optimization performance [4]. Recently,
the newest optimization algorithm, which applies quantization
to the range space of an objective function, represented
exceptional optimization performance in such an intricate
problem [5]. Nevertheless, the dynamics of the quantization-
based optimization are based on the analysis of the con-
ventional stochastic global optimization, so it is difficult to
realize the core component to reveal such superiority. In this
paper, we present the transformation from the Fokker-Plank
equation, which describes the dynamics of the state transition
probability in the quantization-based and stochastic global op-
timization, to the Schrödinger equation for the analysis based
on quantum mechanics [6]. In addition, from experiments to
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compare the optimization performance concerning SA and
Quantum Annealing(QA) [7] [8], we provide the validity of
the quantization-based optimization algorithm in a general
continuous objective function.

II. FUNDAMENTAL DEFINITION AND ASSUMPTION

First, we consider an objective function f : Rn → R+ with
the unique global optimum x∗ such that f(x∗) < f(x), for all
x, x∗ ∈ Rn and x ̸= x∗. Further, we establish the following
definitions and assumptions before beginning our discussion.

Definition 1. For f ∈ R, we define the quantization of f as
follows:

fQ ≜
1

Qp
⌊Qp ·(f+0.5 ·Q−1

p )⌋ = 1

Qp
(Qp ·f+ε) = f+εQ−1

p

(1)
, where ⌊f⌋ ∈ Z is the floor function such that ⌊f⌋ ∈
maxy{y ∈ Z|y ≤ x, x ∈ R}, ε ∈ R[−1/2, 1/2] is the
quantization error, and fQ ∈ Q is the quantization of f .

In Definition 1, we establish the quantization parameter
Qp ∈ Q+ to be a monotone increasing function Qp : R++ →
Z+ such that

Qp(t) = η · bh̄(t) (2)

, where η ∈ Q++ denotes the fixed constant parameter
of the quantization parameter, b denotes the base, and h̄ :
R++ → Z+ denotes the power function such that h̄(t) ↑
∞ as t → ∞, for all t ∈ R++. We assume that the
quantization error defined in (1) with a uniform distribution,
according to the White Noise Hypothesis (WNH) [9]. This
statistical assumption of the quantization error leads to the
mean and the variance provided by the following proposition:

Proposition II.1. If the quantization error εt ∈ R satisfies the
WNH, the mean and the variance of the quantization error at
t > 0 is

∀εqt ∈ R, ERQp(t)ε
q
t = 0,

ERQ−2
p (t)εqt

2
= Q−2

p (t) · ERεqt
2
=

1

12 ·Q2
p(t)

(3)
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Furthermore, we establish the notations of vector-valued
derivatives as follows:

Definition 2. Suppose that {ek}nk=1 denotes the set of basis
vectors on an Euclidean vector space. We define the gradient,
the divergence, and the Laplacian operation such that

∇x ≜
∑
k

∂

∂xk
ek ∈ Rn

∇ · f(x, ·) ≜
∑
j

∂f

∂xj
∈ R, ∵ f : Rn → R

∆ ≜ ∇ · ∇ =
∑
k

∂

∂xk
(
∑
j

∂

∂xj
) =

∑
k

∑
j

∂2

∂xk∂xj
∈ R.

(4)

Holding the above definition and assumption for the quan-
tization error, we can establish the stochastic differential
equation for the quantization-based optimization algorithm
according to [4], as follows:

Proposition II.2. For a given objective function f : Rn →
R+, suppose that there exist the quantized objective functions
fQ(xt), f

Q(xt+1) evaluated from (1), at a current state xt ∈
Rn and the following state xt+1 ∈ Rn such that fQ(xt) ≥
fQ(xt+1), for all xt+1 ̸= xt. We can obtain the stochastic
differential equation of the state transition as follows:

dXt = −∇xf(Xt)dt+
√
Cq ·Q−1

p (t)dW t (5)

, where W t ∈ Rn denotes a vector-valued standard Wiener
process, which has a zero mean and variance with one, Xt ∈
Rn denotes a random variable corresponding to xt.

Given the dynamics of the algorithm as (5), we can obtain
the corresponding Fokker-Plank equation such that

∂tρ(x, t) = ∇ · (∇xf(x)ρ(x, t)) +
1

2
CqQ

−2
p (t)∆ρ(x, t) (6)

, where a state (x, t) instead of the random variable Xt at
time t, and ρ(x, t) : Rn ×R → R[0, 1] denotes a probability
density function of the random variable Xt.

III. DERIVATION OF THE SCHRÖDINGER EQUATION TO
QUANTIZATION-BASED OPTIMIZATION

A. Derivation of the Schrödinger Equation from the Fokker-
Plank equation for the Quantization-based Optimization

For convenience, let a diffusion parameter Q(t) : R+ → R
such that Q(t) ≜ CqQ

−2
p (t). Considering a log function to the

probability density to x such as ln ρ(x, t), we can calculate
the gradient of the log function as follows:

∇x ln ρ(x, t) =
∂

∂ρ
ln ρ(x, t)·

∑
k

∂ρ

∂xk
ek =

1

ρ(x, t)
∇xρ(x, t).

(7)
In addition, we establish a function µ(x, t) : Rn ×R → Rn

such that

µ(x, t) = ∇xf(x, t) +Q(t)∇x ln ρ(x, t) (8)

Substituting (8) into (7), we get

µ(x, t) = ∇xf(x) +Q(t)
1

ρ(x, t)
∇xρ(x, t)

⇒ ∇xf(x)ρ(x, t) = µ(x, t)ρ(x, t)−Q(t)∇xρ(x, t)

(9)

Substituting (9) into (6), it leads

∂tρ(x, t) = ∇ · µ(x, t)ρ(x, t)− 1

2
Q(t)∆ρ(x, t). (10)

Adding (10) to (6), we obtain the following equation:

∂tρ(x, t) = −∇ · v(x, t)ρ(x, t) (11)

, where the function v(x, t) : Rn ×R → Rn is as follows:

v(x, t) = −1

2
(∇xf(x) + µ(x, t))

= −∇xf(x)−
1

2
Q(t)∇x ln ρ(x, t).

(12)

To verify the correspondence with the Schrödinger equation,
we define a quantum state function ψ : Rn × R → C such
that

ρ(x, t) ≜ |ψ(x, t)|2 = ψ(x, t) · ψ∗(x, t) (13)

and a correct velocity of a quantum probability current v :
Rn ×R → C such that

v(x, t) =
ℏ
im

(∇x lnψ(x, t)−∇x lnψ∗(x, t)) (14)

, where ℏ denotes the Dirac constant such that ℏ = h/2π for
the Plank constant h, i denotes an imaginary unit, m denotes
a massive of a particle described by the state x, and ψ∗ is the
conjugate function of ψ.

Substituting (12) and (13) into (9), we obtain

∂tρ(x, t) = −∇ · v(x, t)ρ(x, t)

⇒ ∂tψ
2(x, t) = − ℏ

im
∇ · (∇x lnψ(x, t)−∇x lnψ∗(x, t))ψ2(x, t)

⇒ 2ψ(x, t)∂tψ(x, t)

= − ℏ
im

∇ ·
(

1

ψ(x, t)
∇xψ(x, t)−

1

ψ∗(x, t)
∇xψ

∗(x, t)

)
ψ2(x, t)

⇒ ∂tψ(x, t)

= − ℏ
2im

∇ ·
(

1

ψ(x, t)
∇xψ(x, t)−

1

ψ∗(x, t)
∇xψ

∗(x, t)

)
ψ(x, t)

⇒ ∂tψ(x, t) = − ℏ
2im

∇ ·
(
∇xψ(x, t)−

∇xψ
∗(x, t)

ψ∗(x, t)
ψ(x, t)

)

⇒ iℏ∂tψ(x, t) = − ℏ2

2m
∇ ·

(
∇xψ(x, t)−

∇xψ
∗(x, t)

ψ∗(x, t)
ψ(x, t)

)
.

(15)
Consequently, if we let a function V : Rn ×R → C such

that V (x, t) ≜ ℏ2

2m∇ · ∇xψ
∗(x,t)

ψ∗(x,t) , we can obtain the following
Schrödinger equation:

iℏ∂tψ(x, t) = − ℏ2

2m
∆ψ(x, t) + V (x, t)ψ(x, t). (16)
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B. Quantization parameter in the Quantization-based Opti-
mization from the perspective of the Schrödinger Equation

In this section, we derive the correspondence of the quan-
tization parameter to the Schrödinger equation (16).

From the equality of the correct velocity v(x, t) in the equa-
tions (12) and (14), we can establish the following equation:

v(x, t) =
ℏ
im

(∇x lnψ(x, t)−∇x lnψ∗(x, t))

= −∇xf(x)−
1

2
Q(t)∇x ln ρ(x, t).

(17)

By the definition of the quantum mechanical probability
density in (13), it leads

∇x ln ρ(x, t) = ∇x lnψ(x, t) · ψ∗(x, t)

= ∇x(lnψ(x, t) + lnψ∗(x, t)).
(18)

Substituting (18) into (17), we get

ℏ
im

(∇x lnψ(x, t)−∇x lnψ∗(x, t))

= −∇xf(x)−
1

2
Q(t)∇x(lnψ(x, t) + lnψ∗(x, t))

= −∇xf(x)−
1

2
Q(t)(∇x lnψ(x, t) +∇x lnψ∗(x, t))

(19)
If we arrange both terms by transposition, we obtain

−∇xf(x) =
ℏ
im

(∇x lnψ(x, t)−∇x lnψ∗(x, t))

+
1

2
Q(t) (∇x lnψ(x, t) +∇x lnψ∗(x, t))

= Q(t)Re(∇x lnψ(x, t)) +
2ℏ
m

Im(∇x lnψ(x, t))

(20)
Since ∇xf(x) ∈ Rn, the equation (20) is valid.

From the equation (19), we note that the followings:

• For a pure deterministic case, i.e., Q(t) = 0 the gradient
of the objective function is proportion to the imaginary
part in the gradient of the log scaled quantum state func-
tion ψ. Thereby, we can describe that the deterministic
gradient is a relation to the variation in the frequency
of a particle. From the viewpoint of numerical analysis,
we can regard such a frequency variation based on
quantum mechanics as a quantized operation, so that we
can describe the deterministic variation of the objective
function as the variation of a fundamental power series.

• For a stochastic case, i.e., Q(t) > 0, the gradient of an
objective function contains an additional effect of a pho-
ton injection. Further, according to quantum mechanics,
we regard iℏ∂t as a total energy E(x, t), and we rewrite
(16) as a following familiar formulation:

E(x, t)ψ(x, t) = − ℏ2

2m
∆ψ(x, t) + V (x, t)ψ(x, t)

⇒ ∆ψ(x, t) +
2m

ℏ2
ψ(x, t)(E − V )(x, t) = 0.

(21)

In (21) if we establish a difference energy U : Rn×R →
R such that U = V −E and E < V for all x ∈ Rn and
t > 0, we can write (21) as follows:

∆ψ(x, t)− 2m

ℏ2
ψ(x, t)U(x, t) = 0. (22)

The solution of (22) reveals that the probability of the
state existing beyond the energy hill V is non-zero.

In other words, when the current state exists on a local
minimum around an energy hill V , the stochastic enforcement
Re(∇x lnψ(x, t)) controlled by the quantization parameter
enables to move the current state on the other state over the
energy hill. This phenomenon is known as the ”tunneling
effect.”

Accordingly, we note that global optimization tech-
niques such as simulated annealing, quantum annealing, and
quantization-based optimization present quantum tunneling,
and the hill-climbing based on a noisy vector present equal
properties to those of quantum tunneling.

IV. NUMERICAL EXPERIMENTS

To verify the validity of the analysis, we accomplish nu-
merical experiments on optimization problems to multi-modal
functions. The provided benchmark functions are general test
functions for optimization algorithms for years. In addition, all
the benchmark functions contain a lot of local minima along
the domain space, so finding the global optimum point in a
finite domain is difficult using a conventional deterministic
algorithm such as a gradient descent-based optimizer. How-
ever, as stated in the previous section, if stochastic optimiza-
tion algorithms, including the quantization-based optimization
algorithm, can find the global minimum of the benchmark
functions, it reveals that our quantum mechanic-based analysis
is valid.

We employ Simulated Annealing(SA), Quantum Anneal-
ing(QA), and the quantization-based optimization algorithm
as the stochastic global optimization algorithm for the exper-
iments. SA exploited for various combinatorial optimization
problems such as the Travelling Salesman Problem (TSP),
or Knap-Sack Problem is the representative stochastic global
optimization algorithm. QA is compatible with combinatorial
optimization problems in a similar manner to SA. In particular,
physicists have analyzed the optimization dynamics of QA
from the viewpoint of quantum mechanics. Quantization-
based optimization, which dynamics we analyzed with the
perspective of quantum mechanics in this paper, is another
type of stochastic optimization for combinatorial optimization.
Even though SA, QA, and quantization-based optimization are
not generally compatible with an optimization problem on a
multi-dimensional continuous domain, SA represents sufficient
optimization performance on a low-dimensional vector space.

Table I represents the experimental results. As for the
Salomon, Drop-wave, and Schaffel N2 benchmark functions,
all tested algorithms find the global optimum. Those results
illustrate the stochastic and quantum mechanics-based opti-
mization algorithms include the same optimization dynamics
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TABLE I
SIMULATION RESULTS OF STANDARD NONLINEAR OPTIMIZATION FUNCTIONS. SA DENOTES SIMULATED ANNEALING, QA DENOTES QUANTUM

ANNEALING, AND QUANTIZATION REPRESENTS QUANTIZATION-BASED OPTIMIZATION ALGORITHM

Function Equation Criterion SA QA Quantization

Xin-She Yang N4 f(x) = 2.0 + (
∑d

i=1 sin
2(xi)− exp(−

∑d
i=1 x

2
i ) exp(−

∑d
i=1 sin

2
√

|xi|)
Iteration 6420 17* 3144

Improvement ratio 54.57% 35.22% 54.57%

Salomon f(x) = 1− cos

(
2π

√∑d
i=1 x

2
i

)
+ 0.1

√∑d
i=1 x

2
i

Iteration 1312 7092 1727
Improvement ratio 99.99% 99.99% 100.0%

Drop-Wave f(x) = 1−
1−cos

(
12+

√
x2+y2

)

0.5(x2+y2)+2

Iteration 907 3311 254
Improvement ratio 100.0% 100.0% 100.0%

Shaffel N2 0.5 +
sin2(x2−y2)−0.5

(1+0.001(x2+y2)2
Iteration 7609 9657 2073

Improvement ratio 100.0% 100.0% 100.0%

(a) Xin-She Yang N4 (b) Salmon (c) Drop-Wave (d) Schaffel N2

Fig. 1. Shape of Benchmark functions

analyzed with quantum mechanics. Further, quantization-based
optimization finds the global minimum with fewer iterations
than SA and QA. This result shows that quantization-based
optimization contains an additional property besides the hill-
climbing or tunneling effect in optimization.

As for the Xin She Yang N4 benchmark function, the experi-
mental results represent a significantly different aspect. SA and
quantization-based optimization fall into a local minimum of
around 50% higher value than the global minimum. However,
the local minimum of the benchmark function is located in a
smoother space, whereas the global minimum is located in a
very sharp area. This result shows that SA and quantization-
based algorithms search a minimum point with a positive
Hessian with a relatively small matrix norm. Practically, the
optimization result represents better performance when the
algorithm finds such a minimum point in a sparse dataset,
whereas the algorithm finding a sharper minimum point oc-
curs as an over-fitting problem. Finally, in contrast to both
algorithms, the QA algorithm fails to find a feasible minimum
in the experiment. We suppose the reason why QA fails is
that the Xin She Yang N4 benchmark function includes a
thicker energy barrier to the tunneling effect for searching for
a minimum point.

V. CONCLUSION

We present the analysis from the perspective of quantum
mechanics for quantization-based optimization in this paper.
The presented analysis shows that stochastic optimization
algorithm, such as quantization-based optimization, includes
the tunneling effect to find the global minimum. This analysis
illustrates that the tunneling effect in quantum mechanical
optimization is equal to the hill-climbing property in stochastic

algorithms. Finally, in future work, we will research the hidden
dynamics of why quantization-based optimization represents
finding the global minimum with fewer iterations.
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