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Abstract—This paper introduces quantum neural network
(QNN) architectures and organization, which consists of state
encoding, parameterized quantum circuit, and measurement.

I. INTRODUCTION

This paper basically introduces the neural network design
based on the concepts of quantum computing [1].

II. QUANTUM NEURAL NETWORK

To design and compute QNN using qubits, the qubits should
be controllable for training the neural network. The control is
achieved via the utilization of basic quantum gates in order
to control the positions of qubits over Bloch sphere [2]. Rep-
resentative examples of the basic quantum gates are rotation
gates, which are expressed as Rx, Ry , and Rz , which are for
the rotation over x-, y-, and z-axes. For more details, the gate
functions are performed as unitary operations on a single qubit,
causing it to rotate by a specific value in the given directions of
x-, y-, and z-axes. These gates not only control qubits but also
encode classical bit-scale data. While basic quantum rotation
gates dd are single qubit gates that can only be applied to a
single qubit simultaneously, there are also multiple qubit gates
acting on two or more qubits simultaneously. For example,
a CNOT gate causes entanglement among several qubits by
performing an XOR operation on two qubits [3]. Based on
the above theories and concepts, QNN models are built by
assembling various types of gates. Conventional QNN models
consist of following three components, i) state encoding circuit
(A in Fig. 1), ii) parameterized quantum circuit (PQC) (B in
Fig. 1), and iii) quantum measurement (C in Fig. 1) layers.
State Encoding. First, the encoding layer’s function is to
encode classical data into quantum states because quantum
circuits cannot take classical bits as input. Therefore, the state
encoder converts bits into qubits by passing q number of |0〉
into an array of rotation gates using classical data used as
parameters denoted as θenc. Additionally, the input data X is
split into [x1 · · ·xN ] such that they can be individually used as
parameters, where N is the number of split data for the input
X . Then, the output quantum state of the encoding layer will
contain the information of classical data.
Parameterized Quantum Circuit (PQC). Secondly, there
is PQC which carries out the desired computation, and it
is equivalent to a classical neural network (NN), especially
accumulated hidden layer multiplication. In the layer of PQC,
the input quantum state is rotated by a specific angle using
quantum gates such that the output will give the required value
like the action and state values. In our paper, the qubits are
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Fig. 1: Architecture of quantum neural networks.

computed using the Controlled-Universal (CU) gate which has
flexible control over the direction of rotation, entanglement,
and disentanglement. The structure of the QNN model is
presented in Fig. 1, and it can be seen that the encoding layer
followed by the CU3 layer is repeated several times. The par-
ticular structure is due to the data re-uploading technique [3],
simultaneously encoding and rotating the qubits. As a result,
the computation efficiency of each qubit is maximized, i.e., the
number of qubits is decreased which is required to produce
the values needed for multi-agent reinforcement learning.
Measurement. Lastly, the quantum state produced from PQC
becomes the input of the measurement layer. In this stage,
the input is measured such that the quantum data are decoded
back into classical data for optimization. The measurement
operation is equivalent to the multiplication of a projection
matrix with respect to z-axis. While the z-axis is most
commonly used for measurement, it can be any other properly
defined directions. After conducting the measurement of the
quantum state, the quantum state collapses, and it becomes
an observable. After the decoding procedure, the observable
is used to minimize the loss function. Then, it should be
differentiated for backpropagation. However, quantum data
cannot be differentiated because applying the chain rule will
completely collapse the state of qubits. Thus, the technique to
obtain the loss gradient via the symmetric difference quotient
of loss function of observable is used for QNN training.
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