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Abstract—Recently, semantic segmentation methods leveraging
image generation models have garnered significant attention. In
particular, approach based on Diffusion models (DDPM) that
utilize mid-level activations from the diffusion network with a
majority voting of distributions from several light multi-layer
perceptron (MLP) have shown better performance compared
to GAN-based approaches. However, utilizing a simple majority
voting system is suboptimal. In this paper, we propose a novel
voting method for DDPM-based semantic segmentation. Our
method introduces a weighted sum of distributions, where the
weights are determined by the entropy of the class prediction
results obtained from each MLP model. We conduct experi-
ments on various datasets, including LSUN-Bedroom, FFHQ-256,
LSUN-Cat, and LSUN-Horse. The results demonstrate that our
proposed method achieves better mean Intersection over Union
(mIoU) scores compared to previous work.

Index Terms—semantic segmentation, diffusion, voting, en-
tropy

I. INTRODUCTION

The goal of semantic segmentation is to perform pixel-
wise classification, which is one of the computer vision tasks.
Recent researches [1], [2], [3] have been actively performed to
solve semantic segmentation tasks by extracting representation
from the image generation models such as Generative Adver-
sarial Networks (GANs). The GAN-based method [4] is one of
approaches, which converts the image into latent code through
the learned encoder and extracts representations (feature map)
from the style-based generator to predict the segmentation map
by learning ensemble of 10 per-pixel classifiers. However, this
method can suffer from mode-collapse in terms of diversity in
that it uses GANs, and also requires an additional encoder that
maps images to latent code.

To overcome these limitations, Denoising Diffusion Prob-
abilistic Models (DDPM) [5]-based method [6] has been
explored. They train an ensemble of 10 per-pixel classifiers to
predict the segmentation map in the same way as the GAN-
based method [4]. Since it is based on DDPM, no additional
encoder learning is required, and various representations can
be obtained from the generator compared to the GAN-based
method. Thus, it has better performance in terms of mean
Intersection over union (mIoU) for segmentation tasks. After
each classifiers training, the models used as an ensemble for
semantic segmentation, and the most frequently prediction

class is determined as a final prediction class using a hard-
voting method. In this process, the uncertainty of the proba-
bility distribution of each per-pixel classifier is not considered,
which is suboptimal.

In this paper, we propose a new voting method of using
the weighted sum of the entropy of each model’s probability
distribution as a final probability distribution.

The contributions of the proposed method are as follows:
• Our method can improve prediction performance, because

the entropy of the distribution is treated as weight, the
proportion of models with a more certain probability
distribution is increased.

• It is possible to form a smooth decision boundaries by
switching from hard-voting to a soft-voting method.

II. RELATED WORK

A. Semantic segmentation with generation models.

With the development of image generation models, studies
applying them to downstream tasks such as semantic seg-
mentation have become increasingly active. Among the prior
works, Nontawat Tritrong et al. [1] has focused on extracting
pixel-wise representations from trained GANs, which were
used as input for segmentation models, demonstrating compa-
rable results to supervised methods. LinearGAN [2] proposed a
semantic segmentation method with trained GANs. It utilized
the GAN generator’s feature maps in the image generation
process, where the segmentation is obtained through a series of
steps involving up-sampling, concatenation, and linear trans-
formations of the feature maps. Galeev et al. [3] showed that
it is possible to generate segmentation map with lightweight
Multi Layer Perceptron (MLP) from the representation of the
GAN generator. Additionally, it proposed a structure for ap-
proximating representations for unsupervised domain-specific
pre-training. By utilizing a GAN generator with an additional
encoder that reconstructs to a latent code, DatasetGAN [4]
proposed a structure in which the GAN generator’s feature
maps are passed through an ensemble of MLP classifiers for
the semantic segmentation task. The DDPM-based segmen-
tation method [6], while sharing a similar pipeline to GAN-
based methods, stands apart by utilizing DDPM instead of
GAN for image generation. Notably, it demonstrated improved

304979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023



Fig. 1. Overview of proposed method. Utilizing feature maps of the noise predictor (DDPM U-net)’s decoder, each classifiers makes probability distribution
for segmentation task. To eliminate uncertainty of distribution, we propose a weighted sum of distribution as final distribution.

segmentation performance compared to GAN-based methods
without an additional encoder and yielded superior results
when trained with real images. However, the final prediction
is not optimized because the uncertainty of each model is
not taken into consideration during the process of ensembling
pixel classifiers. In this paper, we propose a way to improve
the problem and compare it with previous studies.

B. Diffusion.

Diffusion probabilistic models [7] are image generation
methods inspired by non-equilibrium statistical physics. These
models predicted noise from a Gaussian distribution at a spe-
cific time-step using a Markov chain. The noise-conditioned
score network [8] generated images through score-matching
and learns a score network capable of estimating gradients
and samples through Langevin dynamics. DDPM [5] redefined
the loss function of diffusion probabilistic models to prioritize
the denoising process, resulting in improved performance. Ad-
ditionally, the Denoising Diffusion Implicit Models (DDIM)
[9] method was modified within the DDPM approach to
enable sampling through a non-Markovian process, effectively
reducing the problematic sampling time that was previously
encountered in DDPM. The Guided Diffusion method [10]
had improved the fidelity of generated images compared to
previous works and outperformed GANs by incorporating
conditions into the sampling process using a classifier in the
DDPM model. Ablated Diffusion Model(ADM) [10] refers
to the diffusion model trained using the method mentioned
earlier. For our experiments, we adopt the ADM network
proposed in [10] as the generation network.

III. PROPOSED METHOD

A. Analysis of previous works

The train, test pipeline and network structure of DDPM-
based segmentation [6] is the same as follows. After freezing
the weights of the learned ADMs [10], feature maps are
extracted from specific blocks of the decoder. The feature
maps are bilinearly interpolated to match the resolution of the
segmentation map and then concatenated. The concatenated
feature map vector is input into the classifier in a supervised
manner, and this process is repeated for each of the 10 pixel
classifiers. In the testing process, after training the classifiers
separately, predictions are generated by combining the outputs
of an ensemble of pixel classifiers. There are a total of 10
classifiers, namely Model 1, Model 2, ..., Model 10. For each
classifier, the feature maps of the noise predictor network
are processed through the respective model. The input image
set {X1, X2, . . . , XN} is input into the classifier, producing
feature maps {S1, S2, . . . , SN} in RHW×D. Then softmax
operation is performed along dimension D on the feature
maps. it means probability distribution for the class at each
pixel of feature maps. Using an ensemble of classifiers, the
probability distribution of each classifier assigns an index
(class) to the pixel with the highest probability. From a hard
voting perspective, the final prediction class is determined by
selecting the most frequently chosen index among multiple
classifiers. This method not only neglect the uncertainty of the
distribution of each classifier, but also has non-smooth decision
boundaries. To address these issues, it is necessary to transition
from a hard voting method to a soft voting method in the
ensemble, and also consider the uncertainty of the distribution.
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LSUN-Bedroom

LSUN-Cat

Image Ground Truth DDPM-based [6] Ours

Fig. 2. Comparisons with DDPM-based method and Ours. Our method achieves a higher mIoU score of 0.8(%) for a specific LSUN-Bedroom image
compared to the DDPM-based method, and a higher mIoU score of 2.2(%) for a specific LSUN-Cat image compared to the DDPM-based method

B. Entropy-weighted voting method

The class probability distribution of ith classifier for a pixel
of an input image x is denoted as q(i)(x) ∈ RC , where C is
the number of classes. The uncertainty of the distribution can
be obtained as follows through the entropy equation.

H(i) = −
C∑

c=1

q(i)c (x) log(q(i)c (x)). (1)

The larger the entropy is, the more uncertain the distribution
is. Thus, to reduce the effect of the uncertain distribution, we
perform weighted-sum for the distribution, where the weight
is inversely proportional to entropy by each distribution. Then,
a new probability distribution p(i)(x) ∈ RC can be obtained
in the form of a weighted sum of q(i)(x) as follows.

p(x) =
N∑
i=1

wi · q(i)(x) (2)

where wi is the weight of ith classifier, which is defined as

wi =
e−kH(i)

N∑
i=1

e−kH(i)

, (3)

where k is a hyperparameter that controls the importance
of the entropy

Then, the final class label c∗ for each pixel is determined
using the argmax operation as follows:

c∗ = argmax
c

pc(x), (4)

where pc(x) represents cth class probability in p(x). Finally,
it is noteworthy that the model structure is not changed, so it
can improve performance while using the existing pre-trained
DDPM-based segmentation model.

IV. EXPERIMENTAL RESULTS

We use a total of 4 datasets including LSUN-Bedroom [11],
FFHQ-256 [12], LSUN-Cat [11], and LSUN-Horse [11]. In
the DDPM-based segmentation [6], 10 classifiers were respec-
tively trained with freezing pre-trained ADM [10], and the
number of images of the datasets used for the training was 40,
20, 30, and 30, respectively. Since our method proposes a new
voting method, we compare it with the existing voting method
used in the DDPM-based segmentation approach [6]. The
overall pipeline for the DDPM-based segmentation remains
the same, including the use of a pre-trained DDPM model.
The only difference lies in the voting method employed.
The performance evaluation of our method in terms of mean
Intersection over Union (mIoU) is conducted on different
datasets with varying numbers of test images. The datasets
used for evaluation consist of 20 images for LSUN-Bedroom,
20 images for FFHQ-256, 20 images for LSUN-Cat, and 30
images for LSUN-Horse.

TABLE I
MEAN INTERSECTION OVER UNION(%) COMPARED TO PREVIOUS WORKS

Method LSUN-Bedroom FFHQ-256 LSUN-Cat LSUN-Horse
DDPM-based [6] 50.2 57.8 57.5 64

Ours 50.4 58 57.7 64.2

Table I demonstrates the superiority of our proposed method
over the existing method in terms of mean Intersection over
Union (mIoU).

Fig. 2 shows comparison results with [6] and Our method,
where our method achieves a 0.8% higher mIoU score than
the DDPM-based method for that LSUN-Bedroom image, and
a 2.2% higher mIoU score for that LSUN-Cat image.

In the case of the bedroom image, our method shows
better similarity to the ground-truth specifically around the

306



chair and in the window frame compared to the DDPM-based
method. This indicates that our method captures the details
and boundaries of these regions more accurately.

Similarly, for the cat image, our method exhibits better
similarity to the ground-truth, particularly around the cat’s
butt, compared to the DDPM-based method. This suggests that
our method is able to capture the shape and contours of the
cat’s body more effectively.

V. CONCLUSION

We analyzed limitations and underlying factors in the en-
semble process of previous DDPM-based method and pro-
posed a new method to overcome the problem of the ensemble
process. Using the proposed method, the issues of distribution
uncertainty and non-smooth boundaries, which were problem-
atic, are resolved. Experiments using the proposed method
showed superior prediction performance than the previous
work in terms of mIoU. However, this method cannot be con-
sidered to be a completely optimized model combination in the
ensemble process, and there is much room for improvement
in this regard.
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