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Abstract—In recent years, ship detection using remote 
sensing images has emerged as a crucial task for coastal 
countries due to advancements in remote sensing technology. 
Synthetic aperture radar (SAR) is a prominent active imaging 
sensor, unaffected by clouds and capable of day-night operation. 
However, SAR images pose challenges such as unclear contours, 
complex backgrounds, and strong scattering, leading to the 
misdetection and missed detection of small ship targets. To 
address these issues, this paper proposes an improved ship 
detection model for SAR images based on the YOLOv8 
framework. Our approach introduces a small target detection 
layer to the original YOLOv8 architecture and adapt the loss 
function using the wise-intersection over union. Experimental 
evaluations conducted on the HRSID and the SSDD datasets 
demonstrate the effectiveness of our method, improving 
detection accuracy, recall, and robustness in complex marine 
environments. 
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I. INTRODUCTION 
Synthetic aperture radar (SAR) is a microwave imaging 

sensor that can actively detect in all-day and all-weather 
conditions. It has very good applicability for monitoring 
oceans with changing climates [1]. In the task of detecting 
ships, SAR offers significant advantages as it remains 
unaffected by variable ocean weather, and enables real-time 
monitoring of ship targets from all directions [2]. 

Deep learning techniques have revolutionized various 
remote sensing applications, including object and oil spill 
detection, traffic monitoring, terrain mapping, coastline 
monitoring, and marine fisheries management, to name a few. 
Object detection, in particular, has garnered significant 
attention in remote sensing research. Deep learning-based 
target detection algorithms can be categorized into two-stage 
algorithms like faster region-based convolutional neural 
network (Faster R-CNN) [3] and single-stage algorithms like 
RetinaNet [4] and you only look once (YOLO) [5]. While 
YOLO exhibits fast speed and high accuracy compared to 
other deep learning algorithms, detecting small objects 
remains still challenging. Researchers are working to improve 
the detection accuracy of small objects while maintaining 
speed. The YOLOv8 [6] is the latest version of  YOLO model 
for object detection, image classification, and instance 
segmentation tasks. 

The objective function, particularly the bounding box 
regression loss, plays an essential role in deep learning-based 
detection models. A well-defined objective function can lead 
to significant improvements. Addressing the problem of 

balancing the bounding box regression for high- and low-
quality examples is of utmost importance. In a previous study 
[7], Tong et al. proposed wise-intersection over union (WIoU), 
an IoU-based loss function incorporating a dynamic non-
monotonic focusing mechanism (FM), which was validated 
on the YOLOv7 model [8]. The dynamic non-monotonic FM 
utilizes the outlier degree instead of IoU to evaluate the quality 
of anchor boxes, and provides a wise gradient gain allocation 
strategy. This strategy reduces the competitiveness of high-
quality anchor boxes, while reducing the harmful gradient 
generated by low-quality anchor boxes and improve the 
detector’s overall performance. 

This paper focuses on improving SAR ship detection using 
an enhanced YOLOv8 framework. We introduce a detection 
layer for small targets on the basis of original YOLOv8 and 
modify the loss function by using the WIoU. The effectiveness 
and applicability of our approach are evaluated using the high 
resolution SAR images dataset (HRSID) [9] and the SAR ship 
detection dataset (SSDD) [10] in a comparative study. 

II. METHODOLOGY 

A. Overview of the Proposed Method 
The YOLOv8 model is an enhanced version of the 

influential YOLOv5 model [11]. It introduces the C2f module 
which is a cross-stage partial bottleneck [12] comprising two 
convolutions that effectively combines high-level features 
with contextual information, leading to improved detection 
accuracy. Additionally, a modified version of spatial pyramid 
pooling [13], known as spatial pyramid pooling fast  module, 
is incorporated at the end of the backbone. In the neck part, 
the feature fusion method employed is the path aggregation 
network-feature pyramid networks [14, 15], enhancing the 
fusion and utilization of feature layer information at different 
scales. The decoupled head is used in the last part of the neck, 
combining the classification and regression branches. Notably, 
YOLOv8 is an anchor-free model that identifies the object's 
center and estimates the distance between the center and the 
bounding box, as opposed to the anchor-based YOLOv5 and 
YOLOv7 models.  

To address the issue of learning feature information for 
small targets in YOLOv8, an additional small target detection 
layer is proposed. This layer combines shallow and deep 
feature maps and increases the number of detection heads 
from 3 to 4. By incorporating this layer, the network focus 
more on detecting small targets and thereby enhance the 
overall detection performance. This modification aims to 
overcome the limitations imposed by large down sampling 
factor in the original YOLOv8 architecture. 

The proposed improvement on YOLOv8-based 
architecture comprises three main components: backbone, 
neck, and head, as illustrated in Fig. 1.  
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Fig. 1. Detailed illustration of the proposed model architecure. 

B. Loss Function 
In the original YOLOv8, the classification is based on the 

binary cross-entropy (BCE) and the bounding box loss is 
based on the complete IoU (CIoU) with the distribution focal 
loss (DFL) [16]. In our proposed approach, the WIoU loss 
function [7] is used as the bounding box regression loss. The 
modified loss function is then expressed as follows.  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊.        (1) 

Here, the BCE loss is given as 

𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 = −𝑤𝑤[𝑦𝑦𝑖𝑖 log(𝑥𝑥𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑥𝑥𝑖𝑖)],     (2) 

where 𝑤𝑤 is the weight, 𝑦𝑦𝑖𝑖  is the labeled value, and 𝑥𝑥𝑖𝑖  is the 
predicted value of the model. 

DFL is an optimized version of the focal loss function that 
extends the discrete classification results to continuous ones, 
leading to improved performance. 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷(𝑆𝑆𝑖𝑖,𝑆𝑆𝑖𝑖+1) = −((𝑦𝑦𝑖𝑖+1 − 𝑦𝑦) log(𝑆𝑆𝑖𝑖) + (𝑦𝑦 − 𝑦𝑦𝑖𝑖) log(𝑆𝑆𝑖𝑖+1)),           
(3) 

where 𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑖𝑖+1  represent the values from the left and right 
sides near the consecutive labels 𝑦𝑦, satisfying 𝑦𝑦𝑖𝑖 < 𝑦𝑦 < 𝑦𝑦𝑖𝑖+1, 
𝑦𝑦 = ∑ 𝑃𝑃(𝑦𝑦𝑖𝑖)𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=0 . Here, 𝑃𝑃  can be implemented through a 
softmax 𝑆𝑆(⋅)  layer, with 𝑃𝑃(𝑦𝑦𝑖𝑖)  being denoted as 𝑆𝑆𝑖𝑖  for 
simplicity. 𝑆𝑆𝑖𝑖 =

𝑦𝑦𝑖𝑖+1−𝑦𝑦
𝑦𝑦𝑖𝑖+1−𝑦𝑦𝑖𝑖

, 𝑆𝑆𝑖𝑖+1 =
𝑦𝑦−𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖+1−𝑦𝑦𝑖𝑖
. 

The WIoU loss adjusts based on the labeling quality of the 
training data. It uses a dynamic non-monotonic focusing 
mechanism to evaluate the anchor frame quality and avoids 
excessive penalties on geometric factors. When the predicted 
box closely matches the target box, the loss function promotes 
better generalization with less training intervention by 

reducing penalties on geometric factors. The expression for 
WIoU can be described as 

𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑟𝑟𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑟𝑟(1 − 𝐼𝐼𝐿𝐿𝐼𝐼)𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  

 = 𝛽𝛽
𝛿𝛿𝛼𝛼𝛽𝛽−𝛿𝛿 (1 −

𝑊𝑊𝑖𝑖𝐻𝐻𝑖𝑖
𝑆𝑆𝑢𝑢

) exp ((𝑥𝑥−𝑥𝑥𝑔𝑔𝑔𝑔)
2+(𝑦𝑦−𝑦𝑦𝑔𝑔𝑔𝑔)

2

(𝑊𝑊𝑔𝑔2+𝐻𝐻𝑔𝑔2)
∗ ),    (4) 

where 𝛽𝛽 indicates the degree of abnormality of the predicted 
box, and a smaller degree of abnormality means that the 
quality of the anchor box is higher. Therefore, using 𝛽𝛽 to 
construct a non-monotonic focal number can assign small 
gradient gains to prediction boxes with large outliers, 
effectively reducing harmful gradients of low-quality training 
samples. Also, 𝛼𝛼 and 𝛿𝛿 are hyper-parameters, and 𝑥𝑥  and 𝑦𝑦 
represent the coordinate values of the prediction box, while 
𝑥𝑥𝑟𝑟𝑔𝑔 and 𝑦𝑦𝑟𝑟𝑔𝑔  represent the coordinate values of the ground truth. 
𝑊𝑊𝑟𝑟 , 𝐻𝐻𝑟𝑟  are the size of the smallest enclosing box, the 
superscript ∗ indicated the operation that detach 𝑊𝑊𝑟𝑟, 𝐻𝐻𝑟𝑟 from 
the computational graph in order to prevent 𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  from 
producing the gradient that hinders convergence. The 
corresponding 𝑊𝑊 and 𝐻𝐻 values represent the width and height 
of the two boxes, respectively. We also have 𝑆𝑆𝑢𝑢 = 𝑤𝑤ℎ +
𝑤𝑤𝑟𝑟𝑔𝑔ℎ𝑟𝑟𝑔𝑔 − 𝑊𝑊𝑖𝑖𝐻𝐻𝑖𝑖 , where 𝑊𝑊𝑖𝑖 and 𝐻𝐻𝑖𝑖  are the width and height of 
the overlapping region of the anchor box and ground truth box. 

III. EXPERIMENTAL RESULTS 

A. Dataset and Training Strategy 
We use the HRSID [9] and the SSDD [10] to verify the 

performance of the proposed method. The HRSID is widely 
used for ship detection and instance segmentation. It contains 
5,604 SAR image slices and 16,591 ship targets. We divide 
images into a training set, a validation set and a test set as 7:1:2. 
All the experiments are implemented on PyTorch. The batch 
size is set to 8 and the number of training epochs to 300. The 
stochastic gradient descent optimizer is utilized with an initial 
learning rate of 0.01 and a momentum of 0.9.  

B. Results and Discussion 
In this experiment,  the precision (P), the recall (R) and the 

mean average precision (mAP) are used to evaluate the 
detection performance of the models. 

Table 1 lists the experimental results on the HRSID with 
YOLOv8 and several improved models. In addition, the 
comparative experiments with state-of-the-art methods are 
conducted based on the YOLOv5 [11] and YOLOv7 [8, 17]. 
The evaluation metrics demonstrate that the improved method 
outperforms the baseline YOLOv5 and YOLOv7 methods in 
terms of accurate ship detection and real-time performance. 
The  precision and recall are 0.5% and 0.4% higher than the 

TABLE I.  RESULTS OF DIFFERENT METHODS ON THE HRSID 

Models P R mAP 
@.5 

mAP 
@.5:.95 

Model 
size(MB) 

Speed 
(sec) 

YOLOv5 0.923 0.865 0.929 0.675 5.0 0.017 

YOLOv7 0.844 0.700 0.786 0.481 74.7 0.279 

YOLOv8 0.934 0.873 0.934 0.713 6.3 0.014 
YOLOv8 

+SmallHead 0.922 0.874 0.922 0.684 6.5 0.017 

YOLOv8 
+WIoU 0.938 0.857 0.923 0.686 6.3 0.014 

Improved 
YOLOv8 0.939 0.877 0.936 0.709 6.5 0.016 
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original YOLOv8, respectively, while the mAP are 
comparable to the original method according to different 
thresholds. Figure 2 showcases several qualitative results for 
visualizing the detection performance of the proposed scheme. 
The green, red, and blue boxes indicate the correctly-detected 
ships, the missing ships and false alarms. To assess the 
feasibility of the proposed method, the trained model and 
parameters is used to perform ship detection on the SSDD [10]. 

Figure 3 presents inshore and offshore ship detection sample 
results which are obtained by the improved YOLOv8 as well 
as other state-of-the-art methods like YOLOv5 and YOLOv7. 
Experimental results show that the proposed method is 
capable of recognizing most small-scale ships even without 
specific training, although there may be few missed detections 
and false alarms when ships are densely stacked. 

YOLOv5 YOLOv7 YOLOv8 YOLOv8+SmallHead YOLOv8+WIoU Improved YOLOv8 

      

(a-1) (a-2) (a-3) (a-4) (a-5) (a-6) 

      

(b-1) (b-2) (b-3) (b-4) (b-5) (b-6) 

      

(c-1) (c-2) (c-3) (c-4) (c-5) (c-6) 

      

(d-1) (d-2) (d-3) (d-4) (d-5) (d-6) 

      

(e-1) (e-2) (e-3) (e-4) (e-5) (e-6) 
Fig. 2. Comparison of the qualitative ship detection results for the improved YOLOv8 and other methods in the HRSID. The green boxes represent 
correctly-detected ships, red boxes indicate missing ships, and blue boxes denote false alarms. (a), (b-c), (d-e) illustrate the detection results of offshore 
ships, inshore ships and densely distributed small-scale ships, respectively. 

     

Ground truth inshore 1 YOLOv5 YOLOv7 YOLOv8 Improved YOLOv8 

     

Ground truth offshore 2 YOLOv5 YOLOv7 YOLOv8 Improved YOLOv8 
Fig. 3. Comparative ship detection results of the improved YOLOv8 and other state-of-the-art methods in the SSDD. 
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IV. CONCLUSION 
In this study, a YOLOv8-based SAR ship detection scheme 

is proposed after analyzing the existing state-of-the-art target 
detection algorithms. Our approach involved adding a small 
target detection layer to the original YOLOv8 and modifying 
the loss function using the WIoU, enabling fast and accurate 
ship target detection in complex marine environments. 
Different improvement of YOLOv8 models were trained and 
evaluated by comparing test results on the HRSID and the 
SSDD. Based on the analysis of experimental results, our 
proposed method demonstrates effective detection of small 
target ships, highlighting its potential applications in SAR ship 
detection. However, it has some limitations in accurately 
recognizing densely-stacked ships, which can be attributed to 
the characteristics of the dataset and certain factors inherent to 
the algorithm. In follow-up research, we consider the 
proposed method with the rotation head frame to achieve more 
efficient detection and localization of ships at multi-scales. 
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