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Abstract—In this paper, we propose a new encoder-decoder
model to enhance the performance of semantic segmentation
in satellite synthetic aperture radar (SAR) images. Traditional
semantic segmentation suffers from significant information loss
during feature compression and expansion, primarily because of
its shallow structure. In particular, SAR ship images are noisy
and difficult to interpret due to the class imbalance problem.
This issue reduces segmentation accuracy and hinders proper
object distinction. The proposed model addresses these problems
by incorporating multiple layers of features to create a connected
structure with the decoder, thereby enhancing the preservation
of feature information. In addition, the Gaussian filter is used
to address the issue of texture bias problem and improve the
accuracy of semantic segmentation. This connection method
reduces information loss in the feature learning process and
addresses the issue of texture bias problem. Compared to the
existing techniques including U-Net, feature pyramid networks,
and LinkNet, the experimental results of semantic segmentation
of SAR ships demonstrate that the proposed method achieves
an intersection over union of 78.2%, which is higher than U-
Net’s 67.8%. Additionally, the proposed model also achieves the
highest Dice coefficient.

Index Terms—image processing, semantic segmentation, syn-
thetic aperture radar, deep learning, gaussian filter, texture bias,
residual learning

I. INTRODUCTION

Synthetic aperture radar (SAR) is an advanced microwave
sensor that is widely used for ocean monitoring. Unlike
optical imagery, SAR can observe climate changes such as
clouds and fog, and it can acquire images regardless of
the time. However, SAR ship images are noisy and only
have two classes: background and ship. As a result, there is
a class imbalance problem, making it challenging to apply
semantic segmentation. In addition, SAR ship images suffer
from a texture bias problem. This issue arises due to the
limited dataset available for SAR ship images, as well as
the insufficient feature information extracted by the encoder.
Consequently, this leads to inaccurate segmentation of objects.
In this paper, we propose a method to address the issue of
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texture bias by connecting the feature information of each
layer using skip connection and reduce the noise of each
layer using a Gaussian filter. In addition, we aim to address
the class imbalance problem caused by the high background
ratio through this process. Finally, we check whether the
segmentation performance of the SAR ship image is improved.

II. RELATED WORKS

A. Semantic Segmentation

Semantic segmentation is the task of classifying pixels into
specific categories of objects or areas, and it is being studied in
various fields such as tumor detection, landmark classification,
and road sign detection. Semantic segmentation is primar-
ily studied using convolutional neural network (CNN) deep
learning models, with the U-Net [1] being the representative
method.

B. U-Net

As one of the popular deep learning models for semantic
segmentation, the U-Net is a U-shaped network designed for
segmentation and follows the encoder-decoder structure. Each
step in the convolutional U-Net consists of two convolution
encoders and one pooling layer, as well as one transposed con-
volution and two convolution decoders. The encoder extracts
the feature map information of the image by progressively
reducing the image size and increasing its depth. The decoder
upsamples the image to convert the information back to its
original pixel position. At this time, the image size is increased
while reducing the depth. Furthermore, a skip connection
is used to connect the feature map of the encoder to the
output of the transposed convolution layer in order to enhance
the upsampling of the image. U-Net has significantly fewer
convolutions compared to other CNN models, which leads to a
problem of poor segmentation accuracy. This is because U-Net
has limited ability to extract and learn feature map information.

C. Texture Bias

It was generally thought that CNN use shape information to
learn, similar to humans. However, recent studies have shown
that CNN rely heavily on texture for object recognition and are
texture bias [2], [3]. The texture bias problem is an issue that
gives more importance to texture rather than shape in image
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recognition. It is characterized by the fact that the texture bias
problem is worse when the amount of training data is small.
Especially in SAR ship images, there is a texture bias problem
due to the limited amount of data and the presence of noisy or
distorted images. This significantly hampers the performance
of semantic segmentation.

III. PROPOSED SCHEME

Fig. 1. Proposed skip connection model architecture

The proposed model utilizes encoder block as the encoder,
as depicted in Figure 1. Additionally, a skip connection is
employed to connect the feature maps of the two encoders
to the decoder, thereby enhancing upsampling. The skip con-
nection is established in concatenate block, and it allows the
feature map to retain the spatial information that is lost during
compression in the encoder. This information then assists the
decoder in generating a more accurate segmentation result. It
then passes through the decoder block with a Gaussian filter to
denoise the feature map and utilize residual learning. Finally,
the output is passed through the dropout and convolution layer.

A. Encoder Block and Concatenate Block

Figure 2 shows the structure of the encoder block and
concatenate block. The InceptionResNetV2 model, acting as
an encoder, passes the feature map information through zero
padding to the concatenate block [4]. The concatenate block
expands the feature map by 2 using a transposed convolution
with a stride 2. It then concatenates the expanded feature map
with an intermediate feature map from the encoder that has the
same resolution as the expanded feature map, as well as the
values from the decoder block. This operation performs the
process of concatenating the feature maps of different blocks.

B. Decoder Block

Figure 3 shows the structure of the decoder block. Here, x
represents the feature map entering the decoder block, while σ
denotes the standard deviation of the Gaussian filter. A(x) is
the structure of the Gaussian filter, batch normalization (BN),
rectified linear unit (ReLU), and convolution. This structure
applies residual learning to add the concatenated feature map
to the last part of the decoder block [5]. The standard deviation

Fig. 2. Encoder block and concatenate block architectures

value of the Gaussian filter is different for each decoder
block, which serves to reduce the noise of the feature map by
decreasing its scale. Equation (1) shows the decoder’s residual
learning process. This process adds the feature map x to the
feature map that has been denoised with a Gaussian filter. This
helps minimize feature loss and texture bias during feature
expansion.

F (x) = A(x) + x. (1)

Fig. 3. Decoder block architecture

IV. EXPERIMENTAL RESULTS

Experiments were conducted to compare the segmentation
performance of the proposed model with the existing U-Net,
feature pyramid networks (FPN) [6], and LinkNet [7]. The
dataset is the high resolution SAR images dataset (HRSID) [8]
which consists of high-resolution SAR images. This dataset
contains 5604 high-resolution SAR images and 16951 ship
instances. We set the batch size to 4, the epoch to 100, the
initial learning rate to 0.001, and the weight decay to 0.00001.
The Adam optimizer was used and the data augmentation
technique was applied. For performance metrics, we used
accuracy, Intersection over Union (IoU), and Dice coefficient
[9], [10].

IoU =
|X ∩ Y |
|X ∪ Y |

. (2)

Dice = 2
|X ∩ Y |

(|X|+ |Y |)
. (3)

In the above equations, X represents the true pixel and
Y represents the predicted pixel. Both performance metrics
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Fig. 4. Sample images of the experimental results

approach 1 as the two areas of X and Y become more equal,
and approach 0 as they diverge.

A. Results

The experimental results compare the values of IoU and
Dice coefficient for ships using U-Net, FPN, LinkNet, and the
proposed model. As shown in Table 1, the Dice coefficient of
the proposed method is 94.3%, which is the highest value. The
proposed method achieves an IoU of 78.2% for ships, which
is an 11%p improvement over U-Net. This demonstrates that
the proposed model can identify objects more effectively than
other models.

TABLE I
EXPERIMENTAL RESULTS.

Backbone Model
Metrics

IoU (ship) Dice Coefficient

Inception

ResNetV2

U-Net 67.8% 90.8%

FPN 60.1% 88.0%

LinkNet 61.4% 88.3%

Proposed 78.2% 94.3%

V. CONCLUSION

In this paper, we propose a method that utilizes a Gaussian
filter and skip connection to enhance the performance of
semantic segmentation in SAR ship images. This method
improves texture bias by reducing noise and extracting in-
formation from multiple layers of encoders, which are then
connected. In addition, residual learning is applied to the
decoder with a Gaussian filter to reduce the loss of feature

information. Experiments show that the proposed method
can achieve significantly better performance than the existing
models.
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