979-8-3503-1327-7/23/$31.00 ©2023 IEEE

Unravelling the Black Box: Enhancing Virtual
Reality Network Security with Interpretable Deep
Learning-Based Intrusion Detection System

Urslla Uchechi Izuazu, Dong-Seong Kim, Jae Min Lee
Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
(uursla8, dskim, ljmpaul) @kumoh.ac.kr

Abstract—This study addresses the critical need to secure VR
network communication from non-immersive attacks, employing
an intrusion detection system (IDS). While deep learning (DL)
models offer advanced solutions, their opacity as ‘black box”
models raises concerns. Recognizing this gap, the research un-
derscores the urgency for DL-based explainability, enabling data
analysts and cybersecurity experts to grasp model intricacies.
Leveraging sensed data from IoT devices, our work trains a
DL-based model for attack detection and mitigation in the VR
network, Importantly, we extend our contribution by providing
comprehensive global and local interpretations of the model’s
decisions post-evaluation using SHAP-based explanation.

Index Terms—Virtual Reality, XAI, Metaverse, Deep learning,
Machine Learning, Intrusion Detection.

I. INTRODUCTION

The emergence of virtual reality (VR) technology has ush-
ered in a transformative phase of immersive and interactive
user experience. Through the amalgamation of visual, haptic,
and auditory stimuli, VR endeavors to transport individuals
into simulated environments that evoke a profound sense of
realism and engagement. [1]. The domain of VR technology
is undergoing extensive adoption and is positioned for notable
progress in the global market. Forecasts suggest that by 2024,
the VR industry is expected to attain a remarkable valuation of
$44.07 billion.

However, the rapid evolution of VR technology presents
notable challenges that expose VR networks’ vulnerability
to malicious interference from within the network, raising
paramount concerns about security threats [2]. Illegitimate
users frequently employ various tactics to exploit the vulnerable
architecture of VR high-speed networks.

In addition, attackers engage in eavesdropping on private
conversations or perpetrate other criminal activities within
VR environments. In more extreme cases, they resort to an
immersive attack known as the “Human Joystick Attack.” In
this attack, the attackers manipulate the VR experience of users
by superimposing images in their field of vision, leading to
potential collisions with physical objects and walls [3].

Furthermore, through the exploitation of critical system vul-
nerabilities and compromised devices, malicious entities can in-
filtrate real-world devices, encompassing household appliances,
thereby posing risks to personal safety and compromising
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critical infrastructure like water supply networks, power grids,
and high-speed rail systems. These threats manifest in the form
of advanced persistent attacks (APTs) as highlighted in [4], and
numerous other attack vectors of similar nature.

A. Explainable DL-based IDS

Despite progress in DL-based Intrusion Detection Systems
(IDS), their intricate models pose interpretation challenges,
especially for non-experts [5]. This opacity hinders trust and
user implementation of DL-based NIDS. Black-box models
lack explanations, limiting optimization based on outputs [6].
In crucial domains like medical diagnosis or threat detection,
blind reliance on models can lead to severe consequences
[7]. Before deployment, assessing model performance and
alignment with goals is vital. Traditional metrics may not
capture real-world variations or purpose, making predictions
and their explanations valuable for reliability assessment.

To address this, Artificial Intelligence (AI) embraces eX-
plainable AI (XAI), enhancing model interpretability [8]. XAI
makes IDSs more understandable for cybersecurity experts.

Al model interpretability divides into intrinsic and post hoc
types. Intrinsic integrates interpretability into model architec-
ture, e.g., rule-based and decision tree models. Post hoc creates
simpler surrogate models approximating complex ones [9].
Employing both enhances understanding and transparency in
various applications, including cybersecurity.

In [10], model interpretability is further classified into two
types, local and global aspects. Local explains individual pre-
dictions, revealing rationales. Global offers insights into overall
model behavior and feature interactions [9].

As the field of XAI gains traction and finds applications
in various domains like natural language processing, and com-
puter vision, it becomes essential to extend these advancements
to IDS to demystify its internal mechanism, to foster practical
deployment.

In exploring model explainability, various approaches exist
[11]. This study prioritizes the Shapley Additive Explanations
(SHAP) method for model interpretation.

Concretely, this paper presents the following contributions:
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Fig. 1. Overview of System Design

1) The design of a Deep Learning-based Intrusion Detection
Framework to protect VR networks against emerging non-
immersive attacks.

2) The integration of SHAP-based explainability techniques
with the aim of providing data analysts and security
experts, with a systematic means of explaining decisions
made by DL-based IDS.

3) The validation of our framework with novel publicly avail-
able datasets, containing well-known and contemporary
attacks which are good representatives of the complex
and diverse nature of the current threat landscape, and
the associated cyber-security challenges.

The paper’s structure is outlined as follows: Section II
reviews research on XAI in IDS. Section III outlines the
proposed framework. In Section IV, we assess our model’s
performance, compare it with state-of-the-art, and offer SHAP-
based explanations for the decisions. Lastly, Section V provides
conclusions.

B. Background Information on XAl in IDS and Research Gaps

In [9], the authors proposed an interpretable DL-based IDS
for detecting and mitigating adversarial attacks in IoT networks.
They employed adversarial training, addressing untargeted and
white-box attacks, and integrated SHAP-based explanations
to reveal the model’s decision rationale, emphasizing critical
classification features.

Similarly, [8] introduced a SHAP-based XAl framework for
producing local and global model explanations. They justified
their SHAP usage due to its strong theoretical basis and versa-
tility across various models, unlike other XAI methods. They
constructed two classifiers and compared their interpretations.

In [6], the authors employed three XAI methods (Rulefit,
LIME, SHAP) to interpret their DL-based model designed
for IoT network threat detection. They aimed to address the

question of trustworthiness in their IDS by exploring both linear
and non-linear techniques for local and global interpretation.

To enable dynamic access control in an SDN, authors in [12]
employed an Anomaly-based RNN. and explained prediction
outcomes via linear regression model coefficients.

Despite significant efforts made by the aforementioned re-
search works, the field of VR has remained largely unexplored
in the context of IDS explainability. Additionally, the utilization
of small-dimensional datasets in these endeavors raises con-
cerns about their suitability for comprehensive representation.

Addressing the identified research gap, we introduce an
XAl-driven system for non-immersive threat detection in VR
networks. To overcome the limitations of older datasets, we
employ a more representative dataset. This system integrates
SHAP-based explanations, enhancing transparency for im-
proved decision-making and risk mitigation.

II. SYSTEM MODEL.

A. Model Architecture.

The proposed Al-driven framework, designed for threat
detection and mitigation for non-immersive VR communication
networks, is depicted in Fig. 1. Leveraging data from IoT
devices, which includes normal traffic instances and non-
immersive attacks like DDos and Dos Hulk, we constructed
a DL model for intrusion prediction. The model consists of
5 layers: an input layer with 17 dimensions derived from
feature engineering on the CICIDS-2017 dataset, and an output
layer with 2 dimensions representing class labels (Benign or
Attack). Hidden layers are composed of 100 and 50 neurons

respectively, utilizing the rectjfied linear unjt (ReLU).
he self}-/de ense %ramewori( is mtegrate& 151t0 usgrs’ head-

mounted displays (HMDs), analyzing incoming network traffic
for deviations and triggering alarms preemptively for early
threat detection. To enhance confidence in our model, we
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use SHAP for XAI, offering global and instance-specific ex-
planations. SHAP employs game theory to estimate feature
importance, selecting them via forward selection or backward
elimination. Its strong theoretical foundation and alignment
with human intuition make it a reliable choice.

B. Description of Dataset/ Preprocessing

Due to the lack of a VR-specific cybersecurity dataset,
the widely used CIC-IDS2017 dataset was adopted for model
training. It comprises eight files with traffic data for five
days, encompassing various attack types (e.g., DOS Hulk,
Portscan, DDoS) and normal traffic. Preprocessing was crucial
to optimize DL model efficiency [9]. The data was transformed
into a binary classification format by grouping attacks and
benign instances. Feature importance-based thresholding led to
a 17-dimensional dataset from the original 80 features. Label
encoding converted categorical variables to numerical format.
The dataset was partitioned into training (70%), testing (20%),
and validation (10%) sets. Standard scaling was applied to
ensure uniform feature scaling within the range of 0 to 1.

TABLE I

THE DIFFERENT TRAFFIC TYPES, THEIR SAMPLE AND SPLIT SIZES
Traffic_Type Sample_size | Training set | Test_set
Benign 654771 523816 130954
FTP Patator 230124 18409 46024
DoS Hulk 158804 12704 32176
SSH Patator 128025 10242 2560
Port Scan 10293 8234 2058
DoS Slowris 7935 6348 1587
DDoS 5897 4717 1179
DoS Slowhttptest | 5796 4636 1159
DoS Goldeneye 5499 4399 1099
Malicious 4183 3346 836

C. Experimental Set-up/Hyperparameters

The experiment utilized Python with Tensorflow 2.9.0 on
Windows 10 platform. The hardware setup included an Intel(R)
Core(TM) 15-7400 CPU @ 3.00GHz processor, 8GB RAM,
and a Tesla K80 GPU. Hyper-parameter tuning was manually
performed to identify optimal settings listed in Tablell.

TABLE II
HYPERPARAMETER USED FOR PROPOSED SCHEME
S/n | Hyperparameters | Value
1 number of layers 5
2 activation function | relu/
3 batch size 32
4 optimizer adam
5 learning rate 0.001
6 epoch 20
7 loss function binary cross-entropy

III. PERFORMANCE EVALUATION/RESULT DISCUSSION
A. Performance Evaluation

The XAl-driven framework’s evaluation used essential met-
rics: accuracy, precision, recall, and fl-score. The results
showcase its strong performance with 99.0% accuracy, 99.6%
precision, 98.6% recall, and 99.0% f1-score respectively.

Confusion Matrix

True Labels

Predicted Labels

Fig. 2. Confusion Matrix of proposed XAl-driven Model

The confusion metrics in Fig.2 shows the total number of
accurate classification, versus the few numbers of misclassified
instances. This indicates that the proposed model is efficient in
making accurate predictions with fewer errors.

B. Comparison Analysis

The proposed XAl-driven model gave better results com-
pared to the CNN using the same dataset. As shown in Fig.3,
our model achieved a 99.2% detection rate, while the CNN
achieved 91.9% accuracy. This signifies a substantial 6.1%
enhancement in accuracy, despite the models being tested under
identical conditions.
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Fig. 3. Performance Comparison of proposed Model XAI-Driven Model and
CNN model

C. SHAP-Global Interpretation of XAI-Driven Model

Following model training and evaluation, the subsequent
phase focused on providing global and local explanations for
predicted outcomes based on SHAP. The CIC-IDS2017 dataset
is quite a voluminous dataset and generating an explanation
of model decisions on a large dataset can be computationally
expensive, therefore to compute SHAP values within a minimal
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time, a sample size of 10 was selected from the X_train since
the goal of XAl is to gain insight on the decisions of a complex
model.
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Fig. 4. Global interpretation of model highlighting the most important features
and the magnitude of their impact on the model

Fig. 4 provides a global explanation through a summary plot,
which highlights the most important features and the magnitude
of their impact on the model, offering valuable insight into their
significance in the decision-making process.

D. SHAP-Instance Interpretation of XAI-Driven Model

Local interpretation involves comprehending a model’s pre-
dictions for individual instances. Fig. 5 displays a forced plot,
utilized for visualizing the alignment between the ‘“output
value” and the “base value”. The plot also illustrates which
features exert a positive impact (red) or a negative impact
(blue) on the prediction, along with their respective magnitudes.
A “benign instance” was selected from a sample index value
in this particular instance. The result indicates that with a
confidence level of 1.00, the predicted output remains benign.
Most importantly, the prominently highlighted features in red
significantly contributed to this prediction.
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Fig. 5. An instance-wise interpretation of a single datapoint with the positive
contributing features and their values displayed in red and the negative
contributing feature in blue.

IV. CONCLUSION AND FUTURE WORK

In this study, we introduce an innovative XAl-driven model
aimed at real-time non-immersive threat detection within the
VR environment. Our approach integrates the SHAP-based
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XAI technique, augmenting our design with enhanced explain-
ability and transparency. This infusion of explainability ren-
ders our proposed framework highly credible and dependable,
catering to the needs of both cybersecurity and data science
analysts for optimal decision-making. Our future endeavors
involve investigating alternative XAI techniques on diverse
datasets to discern computational efficiency.
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