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Abstract—In recent times, Federated Learning (FL) has
emerged as a decentralized framework for intelligent knowledge
sharing, demonstrating a degree of privacy preservation in
safeguarding users’ sensitive information across various cyber-
physical networks like the Internet of Flying Things (IoFT)
network. Nevertheless, there exists a vulnerability wherein ad-
versaries can deduce clients’ gradient or parameter updates to
compromise privacy. This vulnerability is particularly concerning
due to the clients’ utilization of cybersecurity models aimed
at securing the network against cyber intrusions and attacks.
This study investigates the utilization of Gaussian and Laplace
differential privacy (DP) mechanisms by clients during local
training to obfuscate their model parameters, thereby mitigating
the risk of data leakage. Extensive simulations utilizing the
edge-IIoT dataset, validate the effectiveness of perturbing client
models, in terms of upholding privacy and enhancing global
model performance. Thus, demonstrating significant global model
accuracy of 90%, specifically with the introduction of Laplace
noise outperforming an unperturbed global model in a scalable
network.

Index Terms—Cybersecurity, Differential Privacy, Drone Net-
work Security, Federated Learning, Internet of Flying Things,
Intrusion Detection

I. INTRODUCTION

Over the past decade, unmanned aerial vehicles (UAVs),
commonly known as drones, have witnessed significant adop-
tion in both civilian and military operations, owing to advance-
ments in drone manufacturing technology and cost reduc-
tion [1]. Moreover, drones, being highly mobile and flexible
Internet of Things (IoT) devices, are capable of functioning as
aerial base stations, providing computational services within
IoT networks. Thus, the integration of drones into the IoT net-
work is referred to as the Internet of flying things (IoFT). The
IoFT network enables drones to be equipped with adequate
sensors, communication, and intelligent data processing capa-
bilities to expand the functionality of real-time applications,
such as security surveillance, key infrastructure monitoring [2],
precision farming, disaster management, etc. Nevertheless,
security issues have become a daunting challenge in the IoFT
network, due to the susceptibility of IoT devices and systems
to cyber threats. To promote security in this network, intrusion
detection systems (IDS) based on artificial intelligence (AI)
techniques are employed for detecting cyber attacks [3].

In the design of conventional AI-based IDS for IoFT net-
works, UAVs serve as relay nodes responsible for gathering

data from the heterogeneous IoT devices within the network
and transmitting these data either in real-time or periodic
batches to a centralized data center in the cloud for processing
and analysis. Consequently, machine learning (ML) models
are leveraged to learn normal network patterns enabling the
detection of anomalous deviations that could potentially pose
threats to the network’s security [4]. However, the continuous
data transmission inherent in conventional IDS can lead to
high communication costs and exacerbate the susceptibility
to potential attacks. Which can be heightened in resource-
constrained networks like the IoFT. Also, the sensitive data
of users and industries are not preserved, since data privacy is
not guaranteed in such cloud-centric frameworks [5].

Federated Learning (FL), is an emerging privacy-preserving
computing paradigm that enables collaborative training of ML
algorithms across distributed IoT devices [6],. Moreover, the
IoT environment is highly susceptible to diverse types of
attacks, therefore, the collaborative knowledge-sharing offered
by the FL scheme is a plausible solution to promote privacy
and security [7]. In the FL training process, edge devices
or clients utilize their local data to train a shared global
model and subsequently transmit only their model parameters
to a parameter server for the global model aggregation. This
approach minimizes the risk of private data leakage since only
the clients’ model parameters are transferred to a central server
while the data remains locally. Nevertheless, one of the major
privacy challenges encountered in FL is the potential of adver-
sarial nodes to infer clients’ model updates to launch various
attacks like spoofing, malware injections, man-in-the-middle
(MITM) attacks, and denial of service (DoS) attacks [8].
To address these privacy concerns in FL, various privacy-
preserving techniques such as Secure Multiparty Computation
(SMC), Homomorphic Encryption (HE), and Differential Pri-
vacy (DP) can be employed [9]. However, DP, specifically
local DP (LDP) is the commonly used privacy-preserving
technique in FL due to the computational complexity of other
techniques [10].

LDP is employed in the IoFT network and other wireless
networks to safeguard users’ sensitive data. By adding noise
to clients’ training data or model parameters, the contribution
of individual clients’ data is obfuscated with randomized
noise, rendering it difficult for attackers to infer specific client
information. Several works have utilized LDP to achieve pri-
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vacy preservation in FL [8]–[12], employing the probabilistic
distribution of the DP mechanism. A novel noise additive
DP mechanism based on differentiated noise perturbation was
proposed in [8]. To reduce the loss of model performance, the
proposed algorithm analyzes the weight of each client’s update
and compares the value with the weight of the global model
parameter before adding noise to the model parameter. Also,
[9] designed a privacy defense mechanism that intuitively
perturbs gradients to compensate for the risk of information
leakage in FL and to enhance the accuracy performance of the
clients’ models. In [11], the authors presented a secure DP that
leverages an exchange protocol to secure clients transmitted
weights and a decentralized FL setting to curb the failure risk
of single-point systems.

Amidst the contributions of existing works, there is still
a lack of investigation into the impact of the variants of
statistical LDP on the baseline federated averaging (FedAVG)
algorithm, especially in the security domain of the IoFT
network. Therefore, this study presents a comprehensive evalu-
ation of Laplacian and Gaussian noise perturbation techniques,
which are integrated during the local training of the FL-based
IDS to secure and guarantee privacy in the IoFT network.

The following are the contributions of this study:
1) The implementation of FL-based intrusion detection

framework to secure the IoFT network from adversarial
threats and attacks.

2) The perturbation of the clients’ model updates with
calibrated noise before updating the parameter server.
Hence safeguarding the leakage of the users’ sensitive
information from malicious nodes.

3) The investigation of the impact of Gaussian and Laplace
DP techniques on the performance of federated averag-
ing aggregating algorithm, while analyzing the trade-off
between utility (global model performance) and privacy,
considering varying client sizes, privacy budgets, and
batch sizes.

The rest of this article is structured as follows: The proposed
federated learning privacy-preserving framework is captured in
Section II, Results and Performance Evaluation is discussed in
Section III, while Section IV captures the Conclusion.

II. PRIVACY-PRESERVING FEDERATED LEARNING

In the scope of the Internet of Flying Things (IoFT) net-
work, drones assume the role of aerial access points and edge
servers, employed for operating ML-enabled intrusion detec-
tion models (IDMs), thus, fostering secure communication
between IoT devices and the core network infrastructure. The
interaction between drones and other IoT devices in the IoFT
network is facilitated by a diverse array of communication
mediums, encompassing Bluetooth, Zigbee, Wi-Fi, and ad-
vanced cellular networks (4G/5G). Leveraging FL techniques,
the heterogenous data generated from IoT devices, including
packets, logs, and network activities, is seamlessly relayed to
the drones for localized model training. FL’s decentralized
and collaborative learning paradigm not only preserves user
data privacy but also emerges as a potent defense mechanism

against cyberattacks. By distributing model training across
devices, FL minimizes the concentration of sensitive data in a
central repository, thereby reducing the risk of data breaches
and unauthorized access. Furthermore, as an extra layer of
resilience against potential threats, noise is judiciously added
to the model parameters during local training. This strategy
not only enhances privacy preservation but also serves as a
proactive measure to thwart potential privacy infringements
arising from adversaries or cyberattacks. In summation, the fu-
sion of Federated Learning with the IoFT network architecture
stands as a promising strategy to mitigate cyberattacks, fortify
security measures, and uphold the sanctity of data privacy in
the ever-evolving digital landscape.

In the IoFT network, drones act as aerial access points/edge
servers for communication between IoT devices and the core
network, employing diverse communication mediums such
as Bluetooth, Zigbee, Wi-Fi, and cellular networks (4G/5G).
Leveraging the training techniques of Federated Learning,
heterogeneous data from IoT devices, including packets, logs,
and network activities, is transmitted to the drones for lo-
calized model training. FL’s decentralized and collaborative
learning paradigm not only preserves user data privacy but also
emerges as a potent defense mechanism against cyberattacks.
By distributing model training across devices, FL minimizes
the concentration of sensitive data in a central server, thereby
reducing the risk of data breaches and unauthorized access.
Furthermore, as an extra layer of resilience against potential
threats, noise is proactively added to the model parameters
during local training. This strategy not only enhances pri-
vacy preservation but also serves as a proactive measure to
thwart potential privacy infringements arising from internal
adversaries (malicious participating clients/ honest-but-curious
parameter server) and any external adversarial nodes.

A. Federated Averaging

Consider that the parameter server (a central aggregator)
coordinates the training processes amongst the distributed
clients (K) in the network. It is important to note that clients
herein represent the drones that perform local training with the
heterogenous data generated by the different IoT devices in the
IoFT network. Let Pi be the private dataset owned by client
i denoted as Ki, while D is the total data samples of all the
clients. Therefore the federated knowledge-sharing process in
the IoFT network as captured in Fig. 1 involves the following
steps:

Step 1: The parameter server initializes the global model
parameter WR (including learning rate, batch size, and number
of epochs for a neural network).

Step 2: The initial global model parameter is broadcast to
a random number of selected clients f from the set of K
clients, based on a predefined client selection approach (e.g.
the drone’s computational resource).

Step 3: Upon receiving the initial parameter of the global
model WR, the clients utilize their private data Pi to train
the global model with the objective of minimizing the local
loss function Li(Pi, wi). Furthermore, leveraging a specific
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Fig. 1. Proposed Privacy-Preserving FL-Based Intrusion Detection Model for IoFT Network

differential privacy mechanism ( either Gaussian or Laplacian
DP mechanism), the clients anonymize the computed model
parameter.

Step 4: Each participating client’s resultant anonymized
parameter is transmitted back to the parameter server.

Step 5: Based on the averaging principles of FedAVG
employed by the parameter server, the server aggregates the
updates from K clients to obtain an optimized global model.

WR+1 =
1

K

K∑
i=1

wi (1)

Step 6: The new optimized global model is sent to a subset
of clients for another round of training, iterating over multiple
rounds of steps 3 to 5 until the global model converges giving
a desirous performance. Therefore, the federated optimization
problem can be formulated as:

w∗ = argmin

K∑
i=1

Li(Pi, wi) (2)

where w∗ is the global loss function that solves the optimiza-
tion problem of finding the optimal model parameters.

B. Local Differential Privacy (LDP)

A significant merit of the FL approach is that the clients’ pri-
vate data remains at the edge, while only their model updates
are transmitted after training, hence, achieving a certain level
of data privacy. However, inference attacks can be launched
on clients’ updates to infer the training data of specific users.
Therefore, LDP is implemented as an additional defense layer
to secure clients’ sensitive data from inference attacks against
malicious clients or a hones-but-curious parameter server. By
implementing LDP, each client during training adds random
noise to their model updates (as discussed in Step 3) before
transmitting the resultant perturbed model to the parameter
server for aggregation, to preempt data compromise. Definition
1 (Neighboring Datasets): Let the domain of all datasets in the

IoFT network be denoted as Pn. Datasets P , P
′
, where P ,

P
′ ∈ Pn, are considered neighbors if they differ in a single

entry.
Definition 2 (Mechanism): A mechanism M is a specific

algorithm that adds noise to a dataset so that the privacy of
individual data points is preserved. The mechanism M takes
a dataset P as input and produces a randomized output Q.

Definition 3 (Differential Privacy): A mechanism M satis-
fies (ϵ)-DP if for any pair of neighboring datasets P and P

′
,

and any subset S of the mechanism’s output space, the given
probability is well defined:

Pr[M(P ) ∈ S] ≤ eϵPr[M(P ′) ∈ S] (3)

In other words, there is an inconsequential difference to an
output when a mechanism M is applied to P and P ′, satisfying
the differential privacy property. ϵ is the privacy budget that
guarantees the level of privacy protection. A smaller value of
ϵ provides a stringent privacy guarantee, which helps to limit
the influence of any individual data point on the output. It
is important to note that there is often a trade-off between
privacy and utility (global model performance) when DP is
implemented in the FL setting. As the addition of more noise
(smaller value of ϵ) strengthens privacy, invariably limiting the
potential for inference attacks. However, this can decrease the
predictive capability of the global model, because excessive
noise can obscure important learning patterns. Therefore, allo-
cating the right amount of the privacy budget ϵ, that guarantees
optimal data privacy and global model performance should be
considered. The overall privacy-preserving FL-based algorithm
is highlighted in Algirthm 1

C. Noise Additive DP Mechanisms

Gaussian and Laplace distributions are widely recognized
as the primary noise additive mechanisms that inject random
noise into data or computation outputs. These mechanisms
serve the purpose of enhancing privacy and mitigating the
potential exposure of sensitive information. Thus, the clients
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Algorithm 1 Federated Averaging with Differential Privacy.
K is the total number of clients, β the batch size, E number of
epochs, p data sample, η learning rate and ϵ privacy guarantee
Procedure: Server Executes
Initialize Global Model Parameter WG

Initialize privacy parameters ϵ

for each federal round R = 1, 2, ... do
FR ← (random selection of F clients)

for each client k ∈ FR in parallel do
W k

R+1 ← ClientUpdate(K,WR, ϵ, δ)

end
WR+1 ←

∑K
k=1

pk

p ·W k
R+1

end
Procedure: Client Update (k, w, ϵ)
β ← (split pi into mini-batches of size β)
for each local epoch i from 1 to E do

for batch b ∈ β do
w ← w − η · ∇l(w, b)

end
Add the (ϵ)-DP mechanism to the local model weights w
w ← Q(w)

end
return Q(w) to server

perturb their model updates before sending them to the pa-
rameter server, to guard against privacy leakage.

1) Gaussian Mechanism [13]: Given a client’s local model
parameter wi

R, the Gaussian mechanism can be imple-
mented to perturb w by the addition of Gaussian noise u
sampled from a Gaussian distribution with mean 0 and
scale parameter σ (n ∼ N(0, σ2)) determined by the
sensitivity (∆) of the function and the privacy budget
ϵ. Therefore, the addition of artificial Gaussian noise n
∼ N(0, σ2) from a chosen noise scale σ ≥ c∆w/ϵ. c
is the constant represented as c ≥

√
2ln(1.25/δ) for

ϵ ∈ (0, 1). Note that ∆ quantifies the maximum amount
of noise that can be added to the client’s update to
obfuscate its contribution while achieving a desired level
of privacy. Mathematically expressed as:

∆ = max
P,P ′

∥P−P ′∥1=1

∥w′(P )− w′(P ′)∥

where P and P’ are neighboring datasets that differ
in a single entry (∥P − P ′∥1 = 1). w′(P ) is the
perturbed model parameter computed with P . w′(P ′)
is the perturbed model parameter computed with P ′ and
∥.∥ is the L1 norm that measures the absolute difference
between two vectors.

2) Laplace Mechanism [8]: Satisfies ϵ-DP and adds noise
to a client’s update from the Laplace distribution to
enhance data privacy preservation. The Laplace Mecha-

nism M given a function f : Pn → Y , where Y is the
set of possible outputs, is defined as:

M(P ) = f(P ) + Lap(
∆f

ϵ
) (4)

where ∆f is the sensitivity of the function f

D. Learning Algorithm, Dataset Description, and Experimen-
tal Setup

We envisioned that each client in the network is equipped
with a cybersecurity deep neural network (DNN) model that
enables them to intelligently detect the emerging cyber-attacks
peculiar to the IoT environment. To this effect, a lightweight
DNN model comprising an input layer (64 neurons, repre-
senting the input features), 2 hidden layers (each stacked with
128 neurons), and an output layer of 6 neurons (representing
the target classes of 5 attack and 1 benign label) was utilized
as the shared model collaboratively optimized by the clients
during the FL process for enhanced security in the IoFT
network. Moreover, the ReLU activation function was applied
to introduce non-linearity in the hidden layers, while the cat-
egorical cross-entropy loss function and the Adam optimizer
were employed to address the requirements of the multi-class
classification task.

Furthermore, we utilized the edge-IIoT dataset [14], a
real-world dataset containing recent attacks such as MITM,
DoS/DDoS, malware injections, information gathering, and
injection attacks which constitute the major five classes of
attacks in the dataset, to evaluate the performance of the pro-
posed FL-based privacy-preserving IDM. After data prepro-
cessing (the detailed preprocessing procedures can be gotten
in [14]), 64 input features and 6 target classes containing a
total of 152,196 instances were the final datasets used for
the experiment, which was further split into 70:20:10, as the
training, testing, and validation set respectively. Lastly, the
experiment was done using Flower federated framework on
Google Colaboratory with Python 3.9.7.

III. RESULT DISCUSSION AND PERFORMANCE
EVALUATION

The impact of both the Gaussian and Laplace mechanisms
for varying privacy budget ϵ was investigated on the perfor-
mance of the FedAVG aggregating algorithm, based on the
Accuracy, Recall, Precision, and F1-Score evaluation metrics.
On the one hand, the accuracy performances of FedAVG for
both mechanisms given batch sizes 32 and 16 with a learning
rate of 0.001, a local epoch of 5, client size K of 15, and
communication rounds of 10, are displayed in Fig. 2. Also, we
investigated the performance of FedAVG without the addition
of noise.

Theoretically, a smaller value of ϵ provides stringent privacy
preservation but at a trade-off of the utility (global model per-
formance). However, from Fig. 2, considering both Gaussian
and Laplace DP mechanisms, the addition of noise enhanced
the accuracy of the global model in the detection of attacks.
For instance, when ϵ = 0.3 with the addition of the Gaussian
noise @ β = 32, the global model recorded increased accuracy
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Fig. 2. Accuracy Performances of FedAVG Based on Gaussian and Laplace Mechanisms For Varying ϵ values and Batch-sizes When Client Size K = 15

of almost 90% within rounds 1 through 5. Similarly, for
scenarios of all ϵ values and without DP given β = 16, a
steady accuracy above 70% was recorded during rounds 1 and
2. However, given the predefined communication rounds, the
convergence of the global model reaches optimal when ϵ = 0.3,
0.5, and 50. The same effective global model performance is
recorded with the addition of Laplace Noise for the different
ϵ values when compared with the absence of the perturbation
mechanisms.

This could be explained by recent research validating that
the addition of gradient noise to stochastic gradient descent
algorithms given a carefully calibrated noise threshold can
improve the performance of the model [10]. Therefore, the
proposed privacy-preserving FL-based IDM guarantees pri-
vacy and effectively secures the IoFT network even for the
most stringent value of ϵ (lower) and the most lenient value
of ϵ (higher).

On the other hand, to ascertain the robustness of the pro-
posed model in guaranteeing data privacy whilst still securing
the network given the imbalance in the class distribution of
the dataset, the precision, recall, and F1-score metrics were
evaluated and recorded in Table I. As highlighted in Table I,
the addition of Gaussian noise requires a smaller value of ϵ to
achieve optimal performance (for both batch sizes). In contrast,
the Laplace mechanism requires a higher value of ϵ to achieve
optimal performance. In essence, the integration of Gaussian
noise into the clients’ updates not only guarantees to safeguard
the privacy of confidential information in the IoFT network but
also enhances robust security against cyberattacks, based on
the hyperparameters and the dataset utilized.

Fig. 3. Accuracy Performance of FedAVG when Perturbed with Different DP
Mechanisms Vs Without DP given ϵ = 0.5, β = 16 @ K = 30 and 50

Lastly, we investigated the impact of the noise perturbation
mechanisms on a scalable network for fixed ϵ value of 0.5,
β = 16 considering an increased K of 30 and 50 and
compared with when no LDP was implemented. The accuracy
performance for this simulated scenario is displayed in Fig. 3.
As depicted in Fig. 3, the accuracy performance of the global
model was optimized when Laplace noise was added to the
local updates of the clients, despite the increase of client
size. Moreover no significant difference in the accuracy when
Gaussian noise was integrated when compared with when no
noise was added, especially @ K = 30. Since the global model
obtained accuracy performance of above 80%, specifically
from rounds 8 to 10.
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TABLE I
AVERAGE ATTACK DETECTION PERFORMANCE OF FEDAVG WHEN PERTURBED WITH GAUSSIAN AND LAPLACE MECHANISMS

BASED ON VARYING PRIVACY BUDGETS

Epsilon Gaussian Mechanism @ B = 32 Laplace Mechanism @ B = 32
Prec.(%) Rec.(%) F1-Score (%) Prec.(%) Rec.(%) F1-Score (%)

0.1 72.71 74.96 68.78 73.69 75.01 69.70
0.3 80.40 72.62 71.88 70.55 76.13 68.45
0.5 74.22 74.80 70.08 77.29 73.69 71.03
10 70.62 75.84 67.20 75.90 74.39 70.75
30 77.61 73.52 71.69 79.35 66.51 71.06
50 75.51 74.54 70.25 67.87 76.50 65.78
Epsilon Gaussian Mechanism @ B = 16 Laplace Mechanism @ B = 16
0.1 71.84 76.09 69.29 71.85 75.78 69.14
0.3 76.92 74.04 72.05 78.05 74.09 71.54
0.5 78.47 74.19 71.82 72.77 75.71 69.80
10 71.10 76.16 68.99 75.01 74.93 71.01
30 75.43 74.85 71.54 67.84 77.68 66.48
50 77.08 74.05 72.33 75.28 74.67 70.97

IV. CONCLUSION

This study implemented a Federated Learning (FL) frame-
work to enhance cybersecurity in the Internet of Flying Things
(IoFT) network. The FL approach facilitates collaborative
training of a shared cybersecurity model among clients (edge
devices), aiming to optimize the global model’s robustness in
detecting attacks while upholding data privacy. Despite this,
the potential risk for adversarial nodes to perform inference
attacks on clients’ updates can not be overlooked. To preempt
such risks, local differential privacy utilizing Gaussian and
Laplace noise was adopted as a proactive defense layer,
effectively mitigating these attacks and preserving privacy.
Comprehensive simulation experiments validated the proposed
method’s robustness, displaying the global model’s capacity
to attain optimal performance across varying epsilon values,
thus ensuring privacy and security in the IoFT network. In the
future, we will investigate the impact of advanced aggregation
algorithms and differential privacy mechanisms, analyzing the
interplay among privacy, communication costs, and utility.
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