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Abstract—The Zero-trust security architecture is a paradigm
shift toward resilient cyber warfare. Although Intrusion Detec-
tion Systems (IDS) have been widely adopted within military op-
erations to detect malicious traffic and ensure instant remediation
against attacks, this paper proposed an explainable adversarial
mitigation approach specifically designed for zero-trust cyber
warfare scenarios. It aims to provide a transparent and robust
defense mechanism against adversarial attacks, enabling effective
protection and accountability for increased resilience against
attacks. The simulation results show the balance of security and
trust within the proposed parameter protection model achieving
a high F1-score of 94%, a least test loss of 0.264, and an adequate
detection time of 0.34s during the prediction of attack types.

Index Terms—Adversarial Machine Learning, Zero-trust Se-
curity, IDS, XAI

I. INTRODUCTION

Military operations are witnessing a growing demand for
battlefield cybersecurity leveraging artificial intelligence (AI).
Although the physical war has shone more severity on lives
and military operations, cyberwar invasions, as witnessed in
Russia vs. Ukraine, have also resulted in numerous cyberwar
casualties, affecting the confidentiality, integrity, and availabil-
ity of critical infrastructure for individuals and corporations
[1]. In order to mitigate cyber threats [2], intrusion detection
systems (IDSs) have enabled robust defense against various
cyberattacks.

This study is motivated by two security mitigation concerns.
Firstly, the tolerant access IDS in which bad actors have
compromised with diverse perturbation techniques, especially
in deep learning (DL) based frameworks. With these pertur-
bations, attackers maliciously learn machine learning (ML)
models, forcing them to misclassify attacks. However, the
Zero-trust security principle-“never trust”, “always verify”,
employs a layered cyber defense strategy that assumes breach
to scrutinize untrusted devices, users, and especially IDSs
before adoption [3]. Secondly, in an era where current AI
development seeks trustworthiness and explainability, various
black-box IDS algorithms employed for cyber deterrence
have lacked fair, trustworthy, and interpretable human-machine
collaboration for increased cyber resilience [4].

In order to address the increasing level of adversarial
cyberattacks and lack of transparent IDS models in the military
domain, this paper proposes an explainable adversarial miti-
gation method, using the parameter protection (PP) technique
for efficient detection of anomalous from benign attacks while
offering a layer of defense against adversarial perturbation
attacks. It serves as a first layer of zero trust defense for

model obfuscation and preventing the actual model gradient
from exposure and manipulation by malicious actors. The
specific PP approach employs a custom gradient (SGDOp-
timizerWithMask) to ensure robust mitigation of the model
gradient against perturbation attacks. Furthermore, this paper
adopts the Explainable AI (XAI) technique as another pillar
of Zero-trust security, which offers security experts and users
a global explanation that satisfies the trust and reliability
issues of complex black box model predictions of anomalous
from benign attacks. Specifically, this study evaluated two ex-
plainability methods SHapley Additive exPlanations (SHAP)
and Local Interpretable Model-agnostic Explanations (LIME)
regarding effectiveness and model impact decisions.

This study proposed two layers of zero-trust security for
detecting network anomalies. Firstly the trained DL model
is shielded using the PP technique, thereby inhibiting the
attacker from the knowledge of the model. According to [5],
attackers obtain model parameters to perpetuate malicious
adversarial attacks. Therefore, adopting the PP mechanism
prevents excessive model gradient exposure to gain control
over the original model. Secondly, the SHAP and LIME
explainability methods, on the other hand, improve model
interpretability, trustworthiness, and visual explainability of
its prediction to improve trust and concordance with security
experts.

Specifically, this study focuses on the following:

• A zero-trust IDS framework with two rings of layered
defense leveraging parameter protection and model ex-
plainability to increase cyber defense against network
intrusions.

• An extensive dual experimentation to show the model’s
performance with and without an adversarial mitigation
technique using the parameter protection method.

• Presentation of the SHAP and LIME explainability
method comparison regarding efficiency and impact de-
cisions for model transparency.

The study arrangement is thus: Following the introduction
in Section I, Section II reviews brief security concepts of zero
trust for network anomaly detection, adversarial mitigation,
and XAI for trustworthy IDS models. Section III discusses
the proposed architecture using parameter protection approach
with model explainability. Section IV discusses the experi-
mentation environment and results. The study concludes in
Section V.
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II. BACKGROUND AND RELATED WORKS

This section discusses brief security concepts of zero trust
for network anomaly detection, adversarial mitigation, and
XAI for trustworthy IDS models.

A. Zero-trust for Network Anomaly Detection

Cyber-warfare activities wreak heavy havoc on national
security, public operations, and critical infrastructure con-
nected to the internet (such as transportation [6], government
operations, energy plants, and financial institutions). The novel
Zero-trust security Architecture (ZTA) enforces the “never
trust”, “always verify” security principle, to combat early
detection and classification of malicious from benign network
behavior [7]. Various organizational policies and human and
ML-based models integrate to form a robust ZTA against cyber
threats. Adopting intelligent AI-based IDS models in cyberse-
curity is a deterrent technique to interrogate network anomalies
and reduce surface attacks on critical infrastructure. However,
ZTA security principles reveal the compromise of intelligence
of IDS models by bad actors to misclassify attacks, leading to
high false-positive rates. This concept is known as Adversarial
Perturbation [5].

B. Adversarial Perturbation VS Adversarial Mitigation

A scenario where an attacker obtains a model’s full knowl-
edge is known as a white box, while an attacker who lacks
model knowledge is a black box [8]. Adversarial perturbation
attacks aim at forcing perturbation input within a model
to misclassify a prediction. On the other hand, adversarial
mitigation within the concept of intrusion detection uses a
counterattack mechanism to shield IDS models from adver-
sarial perturbations and attacks. The essence of adversarial
mitigation in the light of ZTA security aims at counteracting
and neutralizing adversarial attacks while adding layers of
security that serve as a barrier to attackers [9]. In this way, the
model is robust against degraded security issues, ranging from
false-positive predictions to undetected vulnerabilities. Some
adversarial mitigation defense mechanisms include; model
optimization, adversarial training, adversarial detection, and
the parameter protection technique. This study focuses on the
parameter protection technique for securing model gradients
against adversarial perturbations.

Authors in [8] proposed a deep neural network black-box
adversarial attack for a binary network intrusion classification
of Tor-nonTor network traffic and attaining a 96% and 93.54%
respectively on original predictions. After 2644 adversarial
samples of Tor traffic were applied, the overall accuracy
dropped from 96% to 77% respectively. Their experiment
using the UNB-CIC Tor network traffic dataset showed that
successful adversarial examples introduced to a DL model
could cause severe risks to network infrastructure. Concerning
adversarial training, researchers in [10] proposed an adversar-
ial training framework - GADoT against DDoS attacks, by
training a Generative Adversarial Network (GAN) to defend
against adversarial attacks. This approach is computationally
expensive and time-consuming.

An ensemble mechanism (Def-IDS) involving the retraining
and smoothing of an adversarial training process proposed
by [11] for defense against adversarial attacks. Their works
focused on improving the robustness and computation costs of
the neural network. The authors propose a multi-class genera-
tive adversarial network (MGAN) with a second multi-source
adversarial retraining for increased robustness. The distinction
between previous studies and our work is that a zero-trust
defense strategy combining adversarial threat mitigation with
black box model explainability (XAI) is essential for layered
defense against network intrusions; hence, the focus of this
study.

C. XAI for Model Interpretability

The motivation for XAI adoption in cybersecurity is to
interpret, explain, and evaluate the confidence level, usability,
reliability, and fairness of the decisions of the ML model [12].
Since users need help understanding most black-box ML mod-
els, XAI aims to clarify, interpret, and justify intrinsic deep-
learning model predictions. Two categories of explainability
methods, Post-hoc and Ad-hoc, are used for XAI intrusion
detection models. The ad-hoc explainability method provides
model explanations during its decision process: rule-based
systems, decision trees, rule extraction, and prototype-based
explanation. Post-hoc methods offer explainability information
after model prediction in terms of intrinsic explanations, such
as feature contributions to the model output. Commonly used
post-hoc explainability methods in IDS model explainability
are the SHAP and LIME. Current research into various cyber-
attacks, such as phishing attacks, botnets, and fraud, is gaining
better insights, proper visualizations, and deeper forensics into
the nature of these attacks and significant features for model
training to perform efficient remediation.

A forthright zero-trust cyber-awareness assumes that ML
models can be compromised and become a source of cy-
berattacks. This awareness has led to including the human-
in-the-loop interpretation and explanation of IDS models to
ensure that bias predictions and cyberattacks are not further
propagated [13]. Alongside building frameworks with high
accuracy, XAI methods ensure that IDS models are explain-
able, interpretable, and justifiable to users, security teams, and
senior management for increased defense against cyber threats.

III. PROPOSED APPROACH

This section covers a brief overview of Zero-trust for
cyber warfare and a systematic process of designing a white-
box adversarial deep learning attack, parameter protection,
and model explainability predictions to classify normal from
anomalous network traffic attack types.

A. ZTA for Cyber-warfare

For optimal resilience against cyberattacks and successful
military missions, the US Department of Defense (DoD)
adopts the National Institute of Standards and Technology
(NIST) Zero-trust framework [8] for integrated threat intel-
ligence and remediation. The ZTA assumes no permission of
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Fig. 1. Zero-trust Adversarial mitigation framework with XAI judgment

implicit trust in and outside computing resources. Under the
trust analytics and orchestration capabilities of the US defense
ZTA, [8] machine learning analytics, real-time network traffic
monitoring, and orchestration capabilities are employed to
enforce the security of data and enterprises against cyber
threats. Also, evaluating the confidence levels of ML models,
devices, users, and resources ensures support for mission
requirements. Our proposed defense approach is designed with
continuous security vetting of ML models to ensure they meet
trustworthiness against cyber threats.

B. IDS Classification Model

This work adopts a feed-forward neural network architec-
ture, which consists of multiple dense layers with a recti-
fied linear unit (ReLU) activation functions (σ) and dropout
regulation which prevents overfitting. Following the input
data dimensionality, the dense layer comprises 30 neurons,
followed by a dropout layer that sets 50% of the input units
to 0 (to avoid overfitting). The next dense layer has 15 neurons,
followed by the dropout layer with an equal configuration. The
Adam optimizer is employed for training, which minimizes the
loss function during training while optimizing the weights and
biases of the model.

Equation 1 represents the model:

ŷ = σ(w T
l .Xi + bl). (1)

Where a data sample Xi is passed to the lth layer given as
Xi ∈ R1×d. d signifies the number of features for the model
prediction.

C. Threat Model

The proposed attack in this paper assumes a white-box
threat model, in order to understand and manipulate the
model accordingly as in the same case where the attacker
gains full knowledge of the model architecture, training data,

hyperparameters, and neural network layers. Although white-
box models are less challenging than black-box models, the
model’s performance, when altered with perturbed samples
and manipulation, is highly severe and evaluated. The per-
turbation strength crafted using the fast gradient sign method
calculates the gradient of the loss function for the input. Then
it applies the epsilon scaling to generate adversarial samples
as shown in equation 2:

advx = x+ ϵ.sign(∆xJ(Θ, x, y)), (2)

where x is the original sample, ϵ is a very small number, ∆
is the gradient function, J is the loss function, Θ is the model
weights, and y is the true label. As the epsilon ϵ, increases,
the model is more likely to get fooled.

Algorithm 1 Parameter Protection Technique with Gradient
Masking

Input: Neural network, SDGOptimizerWithMask,
maskstrength
Output: Masked gradients
// Gradient Masking
Set the masking noise strength (maskstrength)
for each value of maskstrength in (0.01, 0.05, 0.1, 0.2, 0.5)
do

Apply SDGOptimizerWithMask with the given
maskstrength
// Evaluation
Test the neural network with perturbed inputs
// Security Assessment
Evaluate the effectiveness of gradient masking in hiding
internal weights

end for
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D. Parameter Protection

The parameter protection technique employed in this ex-
periment is a deterrent cyber defense mechanism that aims
at hiding the internal weights of the neural networks from
the outside world in the form of gradient masking using the
(SDGOptimizerWithMask). External intruders/ hackers cannot
obtain a significant gradient because the internal weights of
the neural networks are less exposed. The strength of the
masking noise controlled by the (maskstrength), is tested
against different ranges of values (0.01, 0.05, 0.1, 0.2, 0.5) to
evaluate a moderate level of security (shielding) for gradients
and at different perturbation levels. Algorithm 1 summarizes
the parameter protection technique using gradient masking.

E. Model Explainability

The SHAP explainer provides the marginal value of con-
tributions made by a feature or subset of features within a
model prediction. While the LIME explainer generates local
surrogate models to approximate the decision-making process
of a complex model, providing interpretable explanations
for individual predictions by highlighting important features.
Equation 3 below evaluates the original prediction model using
the following metrics as shown:

• Decision Impact Ratio (DIR): DIR refers to the rate
of change in decisions due to the omissions of critical
features in the interpretation method.

DIR =
N∑
i

1D(xi) ̸= D(xi − ci)

N
. (3)

Where xi denotes the ith original sample, and ci denotes
the critical area marked by the model for the ith sample.

• Confidence impact ratio (CIR): CIR signifies the percent-
age decline in confidence due to the omissions of a critical
feature in the interpretation method as in equation 4:

CIR =
N∑
i

max(C(xi)− C(xi − ci), 0)

N
. (4)

An evaluation of the explainability methods helps to obtain
a subjective assessment of the security expert’s trust and
assessments of the model decisions.

IV. EXPERIMENTATION AND EVALUATION

This paper carried out systematic experiments to evaluate
the original model, adversarial prediction, parameter protection
predictions, and the XAI model judgments. The neural net-
work employed in this experiment is for binary classification
of anomalous from benign network attack types, and showing
how white-box adversarial examples can fool ML model
decisions.

A. Dataset Selection, Preprocessing, and Simulation Setup

The Network Intrusion Detection dataset is publicly avail-
able on Kaggle [14], consists of a wide variety of intrusions
in a military network environment, and is used in this paper.
The network environment is simulated following a typical US

Air Force LAN and flooded with multiple attacks. 41 network
packet flow features were obtained, with two classes: normal
and anomalous (normal 13449, anomaly 11743). The dataset
is then split into training and testing sets using the train-test-
split Keras and Scikit-learn modules, with data samples split
70% for training and 30% for testing while keeping a random
state for reproducibility. The choice of this dataset for this
experiment is due to its relevance and related representation
of the nature of cyber attacks reflecting military-crafted cyber-
intrusions.

Within the data preprocessing stage, feature selection is
an essential technique that aids model performance. The
Pearson coefficient correlation (PCC) algorithm calculates the
congruence between network traffic features, thereby removing
the uncorrelated features within the set variance threshold
of K-highest scores (0 to 1). 0 denotes no correlation and
1 is a positive linear correlation. The correlation threshold
of this experiment is set to 0.8, using the Scikit learn Min-
Max Scaling function, leaving only 30 relevant and correlated
features. The simulation for this study was in a Python
environment with the Tensorflow 2.9.0 library on a Windows
10 OS with the configuration of Intel(R) Core(TM) i3-7100
CPU @ 3.90GHz, 8GB RAM, GPU Tesla K80.

B. Model Performance and Evaluation Metrics

The performance of the ML models is evaluated adequately
to the degree of correctness and rationality of the intrinsic
behavior of the model. The evaluation metrics within the
experiment include the F1-Score, accuracy, precision, and
recall, test loss value, and optimal timely prediction. The F1-
Score is a better metric since it provides a balance between
precision and recall. F1-Score is denoted as F1 − Score =
2×precision×recall
precision+recall . While accuracy is the simple mean of

model correctness obtained from the difference in predictions
from the labeled ground truth data.

The results shown in Table I summarizes the prediction
performance of the different model output to the test dataset
in predicting anomalous from benign military network attack
types. As shown in Table I, the original prediction attains an
accuracy of 94% with a minimal test loss of 0.124.

The model’s adversarial prediction with Epsilon strength
yields a decreasing test loss value as the perturbation strength
increases. With an excessive perturbation strength of 500, (for
robustness evaluation) the model accuracy forcefully decreases
to 50% with a loss of 1095, thus posing a security risk to any
network.

The parameter protection model using an increasing range
of maskstrength reveals an increased accuracy, reduced loss
value down the table, and added security feature that pro-
tects the model’s accurate gradients from bad actors. The
maskstrenght of 0.2 yields the best parameter protection results
with fair accuracy, F1-Score, and recall of 94%. In a real-world
scenario, parameter protection would provide an added layer
of security with a balance of optimal model performance.

Concerning the timely prediction of attacks, the time re-
quired for the model ordinary prediction is 0.31s without any
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Fig. 2. Confusion Matrix showing the original vs adversarial (epsilon = 500) and parameter protection model (maskstrength = 0.2) results

perturbations. During the perturbations, the average prediction
time is 0.298s. On the other hand, the trade-off for security and
model performance consumes more time within the parameter
protection technique, yielding an average time of 0.34s.

The confusion matrix in Fig. 2 shows the overall rate of true
positive (TP), true negative (TN), false positive (FP), and false-
negative (FN) for the binary classifications of the three models
(original prediction, adversarial prediction, and parameter pro-
tection) experimented. Furthermore, the original model yields
an increased performance without any perturbations or shield-
ing. The FNs and FPs are the lowest in this model. (FP=267,
FN=8). The adversarial confusion matrix shows a high rate
of FPs and FNs as the epsilon strength increases (FP=1049,
FN=1477). Lastly, the parameter-protected confusion matrix
achieves fairness of (FP=232, FN=61) results considering the
noise from the gradient mask, adding the essential security
feature shielding the gradient of the neural networks from bad
actors.

C. Model Explainability Performance

Firstly, we leverage the noise from the adversarial and
parameter protection neural networks, to prevent anomalous
explanation of the DNN model. The SHAP and LIME visual
explainer could not handle the additional complexities for
interpretation. The noise is an obscuring tool and significantly
impacts the interpretability of the SHAP and LIME explainer
within our experiments. This issue remains an open area of
concern in the field of XAI.

However, the original model explainability with an F1-Score
of 94% of explanations is provided in Table II. As explained
earlier in the DIR and CIR equations 3 and 4, which can
equally provide military cybersecurity teams with a proper
judgment of any model decisions before adoption.

In the quantitative assessment of SHAP and LIME, the
SHAP achieves a better decision and confidence impact than
the LIME explainer and wins as a better performer within our
experiment.

The MEAN Vote improves model inference and the Cyber-
security Experts’ Trust by aggregating the mean DIR of the
explainability methods with the CIR of the same explainability
methods (SHAP and LIME). If the mean DIR value is greater

TABLE I
SUMMARY OF MODEL PERFORMANCE AND DETECTION

Model Accuracy
(%)

F1-Score
(%)

Precision
(%) Loss time

(s)

Original
Prediction 94 94 95 0.124 0.31

Adversarial Perturbation with ϵ
0.01 94 94 94 0.128 0.33
0.05 94 94 94 0.128 0.29
0.1 94 94 94 0.129 0.29
0.5 94 94 94 0.133 0.29
500 51 51 51 1095 0.29
PP with maskstrength
0.01 90 90 90 0.2642 0.34
0.05 92 92 92 0.2156 0.33
0.1 92 92 92 0.2171 0.33
0.2 94 94 94 0.1983 0.37
0.5 93 93 94 0.203 0.33

TABLE II
EXPLAINABILITY CHECKLIST BASED ON THE ORIGINAL PREDICTION WITH

THE F1 SCORE OF 94%

Explainability
Method

Decision
Impact Ratio
(DIR)

Confidence
Impact
Ratio
(CIR)

SHAP 0.8649 0.1239

LIME 0.7680 0.2776

Cybersecurity
Experts’ Trust
MEAN Vote

0.8165 0.20

than or equal to the mean CIR value, the mean vote will be 1.
Otherwise, it will be 0. The mean vote can improve decision-
making for military security experts based on this consensus
and provide real-time judgments and remediation to attacks,
as required by the Zero-trust defense architecture.

The SHAP visual plot is shown in Fig. 3, where the various
network traffic features are ranked based on their average im-
pact on the model, thus providing various insights like model
debugging, feature selection, feature engineering, more precise
explanations, and the particular feature importance for model
prediction. For instance, if the dsthostsrvcount randomized to
have no prediction power in the model, this action will force
a low accuracy and overall model performance of the binary
class prediction. This plot gives a better understanding of the
model’s black box nature, relying on and transparently at-
tributing training features for better understanding and tactical
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decisions within military networks.

Fig. 3. SHAP feature importance on model output, with test data

Fig. 4 highlights the LIME model probability prediction. It
interprets and measures the probability of the model prediction
within a specific attack to ascertain if anomalous or benign
using the LIME explainability method. As shown in Fig. 4, the
LIME explainer is 92% confident that the individual network
traffic is normal (1) and 8% certain that of not an attack (0).

Fig. 4. Sample data LIME model probability prediction

V. CONCLUSION

Adopting an adversarial model within a zero-trust security
framework, re-thinks how to respond to advanced persistent
threats within cyber warfare scenarios to mitigate constant
severe intrusions and attacks. The zero-trust approach helps to
enhance the system’s overall security posture and resilience.
The parameter protection technique ensures a more secure
model against gradient exposure and manipulation by either
white-box or black-box attacks. Our experimental results have
shown that the PP method improves model security while

offering a good classification result of anomalous from benign
attacks. Additionally, the XAI methods explored in this paper
provide trust and reliable results toward effective cyber threat
mitigation.
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