
X-HDNN: Explainable Hybrid DNN for Industrial
Internet of Things Backdoor Attack Detection

Love Allen Chijioke Ahakonye, Cosmas Ifeanyi Nwakanma †, Jae Min Lee, Dong-Seong Kim
IT Convergence Engineering, † ICT Convergence Research Center,

Kumoh National Institute of Technology Gumi, South Korea
loveahakonye, cosmas.ifeanyi, ljmpaul, dskim@kumoh.ac.kr

Abstract—This study proposes a hybrid deep neural network
(HDNN) framework, called X-HDNN, for detecting backdoor
attacks in Industrial Internet of Things (IIoT) data. The X-HDNN
combines LeakyReLU and focal loss functions to reduce false
positives and losses. A comparative analysis of the performance
of the primary deep neural network and the proposed X-HDNN
had remarkable improvement in f-score value from 57% to 78%
and loss of 0.0044 to 0.0014. It also incorporates the SHAP
explainability technique to provide interpretable and reliable
detection. Evaluating the X-HDNN model using backdoor impact
ratio, feature importance score, and decision confidence helps
understand the model’s outcomes and the significance of each
feature. The findings enhance trust in the model and facilitate
better decision-making based on the provided explanations.

Index Terms—Backdoor, Decision, and Confidence Impact
Ratios, Deep Neural Networks, Focal Loss, LeakyReLU, SHAP,
XAI,

I. INTRODUCTION

Deep learning techniques have been extensively utilized
in Industrial Internet of Things (IIoT) intrusion detection
systems (IDS) [1], necessitating enhanced model security.
However, IIoT applications continue to face threats from
unauthorized access and attacks that exploit vulnerabilities in
authentication mechanisms, potentially compromising critical
infrastructures [1], [2]. Backdoor attacks pose a significant risk
among these threats, as they disrupt the operational reliability,
safety, and efficiency of critical infrastructures [2].

To mitigate the impact of unauthorized access on IDS
model training caused by backdoor attacks, this study proposes
an explainable hybrid deep neural network (X-HDNN) that
addresses high false positives and loss in imbalanced data.
The X-HDNN incorporates the Leaky rectified linear unit
(LeakyReLU) activation function and focal loss technique to
effectively manage false positives, reduce loss, and maintain
classification accuracy. Additionally, an explainable artificial
intelligence (XAI) technique, precisely the SHapley Additive
exPlanations (SHAP), is employed to provide comprehensive
interpretations of attack classifications, enhancing trustworthi-
ness and model transparency [3], [4].

The X-HDNN framework leverages LeakyReLU to over-
come the ”dying ReLU” problem and improve gradient flow
during training. The focal loss handles imbalanced data by
assigning different weights to challenging samples, down-
weighing the contribution of well-classified instances. Com-
bining LeakyReLU and focal loss reduces loss, mitigates

false positives, and improves classification performance. The
SHAP explainability approach further enhances attack classi-
fications’ interpretability and visual explainability, addressing
the need for comprehensibility and trust in black box IDS
algorithms [4], [5].

Specifically, this study focuses on the following:
1) A hybrid deep neural IDS framework incorporating

LeakyReLU and focal loss to reduce false positives
and loss; and model explainability to enhance the inter-
pretability of model decisions for attack classification.

2) A substantial experimentation showing the model’s per-
formance with traditional activation and cross-entropy
loss functions and the proposed hybrid of LeakyReLU
activation and focal loss functions.

3) Presentation of the SHAP explainability technique as-
sessment regarding impact decisions and comprehensi-
bility proficiency for model transparency.

The study arrangement is thus: Following the introduction in
Section I, Section II reviews existing works on backdoor attack
detection utilizing deep neural networks. Section III discusses
the proposed hybridized deep neural network model with XAI.
Section IV highlights the experimentation environment and
results. Section V concludes the study.

II. RELATED WORKS

Several studies have proposed deep neural networks to
defend against backdoor attacks using pruning, tuning defense
schemes, and analyzing internal activation values [6]–[8].
Another approach involves identifying prompts and utilizing
entropy allocation to enhance defense mechanisms [9]. These
studies collectively contribute to developing robust defenses
against backdoor attacks.

A study by [10] proposed a conditional generative model
that effectively identifies and prevents backdoor attacks by
learning the likely distribution of possible prompts. In a
related study, [11] extended this technique by demonstrating
differential privacy’s efficiency in detecting outliers of back-
door attack detection. Aimed at rendering backdoor attacks
ineffective, [12] implemented a data augmentation policy and
preprocessing input samples to invalidate prompts during the
inference phase; [13] highlighted that the complexity of
current defense methods increases as class labels are added.
They suggest a more effective strategy that utilizes the K-
arm optimization method to simplify the defense approach and
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handle models with numerous classes. Although research con-
tributions enhance the prevention and detection of backdoor
attacks in various scenarios, model loss, and high false posi-
tives remain critical issues, particularly in the heterogeneous
IIoT sensor data.

A novel approach named DeepGuard was introduced for
privacy-preserving backdoor detection and identification in a
multi-participant computation scenario within an outsourced
cloud environment [14]. While the efficacy and efficiency of
the backdoor attack detection and identification algorithm were
demonstrated, there remains room for enhancing the model’s
handling of loss, reducing false positives, and improving the
interpretability of its decision-making process.

III. METHODOLOGY

This section briefly overviews the X-HDNN model for
backdoor attack detection and a systematic process of SHAP
explainability interpretation leveraging the backdoor impact
ratio, feature impact score, and the decision confidence score
to evaluate the model decisions for backdoor attack classifica-
tion. Fig. 1 is the pipeline of the system model process flow.

Fig. 1. The pipeline process flow of the proposed X-HDNN

A. Characterization of Backdoor Attacks
Backdoor attacks involve intentionally inserting hidden vul-

nerabilities or malicious functionality into a system, enabling
unauthorized access or control [2]. These attacks manipulate
data or insert hidden patterns to bypass security measures and
compromise system integrity, resulting in high false positives
and increased model error loss. Preventing and mitigating
backdoor attacks is crucial for maintaining the security and
integrity of network infrastructures.

Commonly used sophisticated strategies such as BadNets
and trojan attacks enable backdoor attacks [10]. The BadNets
approach injects backdoor attacks by introducing randomly
chosen clean data triggers and modifying their labels [15].
On the other hand, trojan attacks allow intrusion into pre-
trained deep neural network models without compromising
clean datasets, achieved through reverse engineering and the
generation of trojan triggers and training data [16]. These stud-
ies shed light on diverse backdoor attack strategies and their
implications for machine learning model security, including
false model performance in terms of high false positives or
losses.

B. Hybrid Deep Neural Network Architecture for Backdoor
Attack Detection

The proposed X-HDNN structure consists of multiple dense
layers with LeakyReLU activation functions and dropout reg-
ularization to prevent overfitting. The network architecture
includes three dense layers with 64, 32, and 16 neurons, each
followed by a LeakyReLU activation function. Dropout layers
with a rate of 0.5 are inserted after the first two dense layers.
The output layer employs the softmax activation function for
multi-class classification. During training, the model optimizes
error loss and false positives using the focal loss function
combined with the softmax function.

Given x as the output of a layer, Where W1,W2,W3 are the
weight matrices, b1, b2, b3 are the bias vectors, α is the slope
parameter for LeakyReLU activation, p is the dropout rate,
Softmax is the softmax activation function and ytrue, ypred
represents the focal loss function. The model’s performance is
optimized by adjusting these parameters to match the true class
labels with the predicted probabilities. The hybrid deep neural
network framework is implemented as follows in Equations 1,
2, 3, 4, 5 and 6 below:

x = W1 · inputs + b1x = LeakyReLU(x, α), (1)

x = Dropout(x, p), (2)

x = W2 · x+ b2x = LeakyReLU(x, α), (3)

x = Dropout(x, p), (4)

x = W3 · x+ b3x = LeakyReLU(x, α), (5)

outputs = Softmax(W4 · x+ b4). (6)

The Python Keras, TensorFlow, and PyTorch libraries define
the LeakyReLU, dropout, and softmax functions and the
weight matrices W1, W2, W3, and W4 and bias vectors b1, b2,
b3, and b4 specific to the X-HDNN architecture are initialized
during the training process. Algorithm 1 summarizes the
process flow of the X-HDNN for backdoor attack detection.

C. SHAP Model Explainability

Explainability is a crucial aspect of artificial intelligence
(AI) in cybersecurity, encompassing various predictive models
across domains. The utilization of SHAP values allows for a
deeper understanding of the impact of each input feature on
the model’s decision-making process. In detecting backdoor
attacks, the SHAP technique proves valuable in identifying
the significant features influenced by backdoor triggers. [17]
gave detailed explanations on the calculations and application
of SHAP, emphasizing its importance in XAI for cybersecurity.
The SHAP explainability interpretation is assessed based on
the metrics below:
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Algorithm 1: Explainable Hybrid Deep Neural Net-
work

Input: df , where df = Set of classified instances
Output: X-HDNN

1 Require: df ̸= Ø, num attributes > 0
1: procedure BUILD HDNN WITH SHAP(a)
2: Data Preprocess
3: Create the model architecture
4: Compile Model
5: Define early stopping criteria
6: Model Test, validate and using early stopping
7: Evaluate Model Prediction
8: Generate SHAP Interpretation for Model Predictions
9: Evaluate generated SHAP interpretations using

decision and confidence impact ratios
10: end procedure

• Backdoor Impact Ratio (BIR) measures the proportion
of backdoor instances correctly classified as backdoor at-
tacks. It is calculated as the ratio of true positive backdoor
instances to the total number of backdoor instances as
shown in equation 7.

BIR =
Total Backdoor Instances
True Positive (Backdoor)

. (7)

• Feature Importance Score (FIS) quantifies the contribu-
tion of each feature in the decision-making process of
backdoor attack detection. It is calculated by analyzing
the SHAP values for the affected features and summing
their magnitudes in equation 8 below:

FIS =
n∑

i=1

|SHAP Valuefeaturei | . (8)

• Decision Confidence Score (DCS) measures the overall
confidence of the model in making correct decisions
regarding backdoor attack detection. It is the average con-
fidence score of correctly classified backdoor instances as
in equation9.

DCS =

∑k
i=1 Confidence Scorebackdoor instancei

k
. (9)

The total backdoor instances represent the total number
of backdoor occurrences, and the true positive (Backdoor) is
the number of correctly classified backdoor occurrences in
equation 7. The SHAP Value in equation 8 is the specific
feature for i ranging from 1 to n, and the total number of
features considered for a backdoor, n, corresponds to the range
of features contributing to the decision-making process. The
confidence score in equation 9 is the value assigned to a
backdoor instance, where k is the total number of correctly
classified backdoor instances, denoting the count of instances
where the model correctly identifies an instance as a backdoor
attack.

Assessing the SHAP explainability of the X-HDNN for
backdoor attack detection offers security experts the oppor-
tunity to subjectively evaluate their level of trust in the model
and assess its decisions. It shows the confidence and reliability
of the model’s outputs, enabling informed judgments and
decisions in backdoor attack detection and mitigation.

IV. EXPERIMENTATION AND RESULT DISCUSSION

A. Dataset Description and Experimentation Environment

This study utilizes the WUSTL-IIoT-2021 dataset, a well-
established dataset in cybersecurity research focused on In-
dustrial Internet of Things networks [18], [19]1. It spans
approximately 53 hours of data samples, totaling 1,194,464
observations, 41 features, 87,016 attacks, and 1,107,448 nor-
mal samples. Amongst the 7.28% diverse attack types, the
backdoor constitutes 0.25%, which is the focus of this study.
The dataset was split into training (60%), testing (25%),
and validation (15%) sets. The StandardScaler technique was
applied to obfuscate the relationship between the original fea-
ture values and the classification, preventing direct inference
of sensitive data. The choice of the dataset is due to its
relevance to IIoT network cyberattacks and its ability to mimic
authentic industrial systems. The experimentation was with
Python on Google Colaboratory, running on a system with an
Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz and 8GB RAM,
operating on Windows 11.

B. Proposed Hybrid Deep Neural Network Model Perfor-
mance and Evaluation Metrics

The X-HDNN evaluated the backdoor attack classification
using accuracy, f-score, precision, and recall. The priority of
the f-score in this study is due to its ability to balance precision
and recall, making it suitable for imbalanced scenarios. Unlike
accuracy, which can be misleading in imbalanced datasets,
the f-score considers precision and recall, comprehensively
assessing the model’s performance. The f-score is calculated
as in equation 10 below:

f-score =
2× precision × recall

precision + recall
(10)

The f-score correctly identified the few backdoor instances
while minimizing false positives and negatives, ensuring re-
liable and accurate detection. The X-HDNN performance
in terms of f-score in Fig. 2 demonstrates the significant
prediction of the few backdoor samples in highly imbalanced
WUSTL-IIoT-2021 dataset with 78% f-score, 93% accuracy,
77% recall, 78% precision. Furthermore, the precision, recall,
and f-score performance indices highlight the ambiguity as-
sociated with depending on accuracy alone, particularly in
heterogeneous IIoT networks with highly imbalanced scenar-
ios. Fig. 3 is the confusion matrix classification report of
the few backdoor attack instances against normal instances
showing only four (4) misclassified instances out of 52 total

1https://ieee-dataport.org/documents/wustl-iiot-2021
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backdoor samples. Similarly, Figs. 4 and 5 illustrate the X-
HDNN learning process path performance with a minimal loss
of 0.014 upon test and validation.

Fig. 2. Graph showing the X-HDNN performance detecting backdoor attacks
in the WUSTL-IIoT-2021 dataset.

Fig. 3. Confusion metrics illustrating the X-HDNN capacity to significantly
detect 48 out of 52 instances of backdoor attack samples

C. Explainable Hybrid Deep Neural Network Model Perfor-
mance

The assessment of backdoor impact ratio, feature impor-
tance, and decision confidence score by the SHAP explainabil-
ity approach allows a subjective evaluation of the X-HDNN
classification of some level of trust and assesses its decisions.
This analysis provides a comprehensive understanding of the
confidence and reliability of the model’s outputs, enabling in-
formed judgments and decisions in backdoor attack detection.

The metrics presented in Table I provide valuable in-
sights into the X-HDNN detection of backdoor instances.
The comparative analysis of the performance of the primary
deep neural network and the proposed X-HDNN shows an
improved f-score of 78% from 57%, demonstrating the hy-
bridized LeakyReLU’s efficiency and focal loss. A backdoor

Fig. 4. Learning process path graph of loss versus epoch demonstrating the
X-HDNN performance with minimal error loss during the testing phase.

Fig. 5. Learning process path graph of loss versus epoch demonstrating the
X-HDNN performance with minimal error loss during the validation phase.

TABLE I
EXPLAINABILITY ASSESSMENT OF THE SHAP INTERPRETATION OF THE
X-DNN CLASSIFICATION BASED ON THE SHAP VALUE (0.0078) AND

CONFIDENCE SCORES (0.9922) AND 78% F-SCORE (52 BACKDOOR
INSTANCES AND 48 INSTANCES OF TRUE POSITIVE PREDICTIONS)

Basic Deep Neural Network Hybrid Deep Neural Network
Accuracy (%) 93 93
Recall (%) 40 77
Precision (%) 95 78
Loss 0.044 0.014
F-score 57 78

SHAP Explainability Interpretation
Backdoor impact ratio 1.3

Feature importance score 0.0078
Decision confidence score 0.9922

impact ratio of 1.3 indicates a higher prevalence of backdoor
instances, while a feature importance score of 0.0078 suggests
low importance with a slight influence. The high decision con-
fidence score of 0.9922 reflects the model’s strong confidence
in classifying backdoor instances. These metrics contribute to
understanding the backdoor instances’ prevalence, importance,
and associated features, as depicted in Fig 6.
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Fig. 6. Graph showing the average impact of the data features significant for
backdoor attack prediction

V. CONCLUSION

This study presented the hybridization of the LeakyReLU
activation function and focal loss to mitigate high false
positives and loss. It analyzed the outcome with the SHAP
interpretation’s effects using decision confidence, feature im-
portance scores, and backdoor impact ratio. A comparative
analysis of the experimentation of the primary deep neural
network and the proposed X-HDNN showed significant im-
provement in reducing false positives and loss. Interpretation
of the SHAP explainability provides different perspectives to
assess the robustness, reliability, and interpretability of the X-
HDNN predictions. The experimentation result facilitates more
comprehensibility of the classifier’s decisions to understand
the factors influencing the model’s decisions and provide
insights into the importance and impact of each feature.
It aids in building trust in the model and enables better
decision-making based on the explanations provided by the
SHAP explainability technique. In the future, we intend to
expand the scope of the study by exploring other explainability
techniques’ interpretability.
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