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Abstract—Automatic modulation classification (AMC) is es-
sential to dynamic spectrum access in B5G and 6G networks
for refarming the spectrum resources. However, the recent
deep learning (DL)-based AMC framework has communica-
tion overhead, requires more computing resources, and poses
security issues. Next-generation wireless networks allow dis-
tributed collaborative scenarios to provide ultra-reliable and low-
latency communications (URLLC) services. This study proposes
a blockchain-assisted decentralized collaborative AMC frame-
work with a lightweight convolution neural network (CNN)
model. The proposed system utilizes the federated learning (FL)
technique to enable a privacy-preserving scheme by performing
local training on edge and collaboratively producing a reliable
model. A blockchain-based decentralized aggregation technique
is implemented, using the Interplanetary File System (IPFS) as
off-chain distributed storage for local and global models. This
framework applied an improved accuracy-aware client selection
mechanism (iACSM) to enhance the model performance and
reduce communication overhead by selecting high-reputation
authorized clients. Moreover, an ERC-20 token-based incentive
mechanism has been developed to incentivize high-reputation
selected clients. The proposed model measurement achieves high
accuracy AMC with a low-complexity model structure in a trust-
based decentralized learning scenario for constrained-resource
wireless devices.

Index Terms—automatic modulation classification (AMC),
lightweight convolutional neural network (CNN), federated learn-
ing (FL), blockchain-based decentralized aggregation, client se-
lection, incentive mechanism

I. INTRODUCTION

The automatic modulation classification (AMC) framework
is widely implemented for cognitive radio, signal detection,
and spectrum utilization beyond 5G (B5G) and 6G networks.
Recently, there has been extensive utilization of deep learn-
ing (DL) techniques for the development of advanced AMC
with enhanced functionalities. The centralized DL-based AMC
frameworks were proposed for the orthogonal frequency-
division multiplexing (OFDM) systems [1], [2]. However,
the centralized DL scenarios for the AMC applications have
communication overhead and require more computing re-
sources [3]. The constrained computing resource of wireless

mobile devices makes it challenging to train and produce a
reliable AMC model. Furthermore, the centralized DL-based
AMC framework poses privacy issues by sending raw data
to the cloud server for training processes [4]. As a solution,
federated learning (FL) is implemented to address the issues
and preserve the data privacy of each participant by performing
local training on edge using their data [5]. The FL scenario
allows the clients to collaboratively generate a robust model
and reduce communication overhead [6]. The authors [5]
implemented AMC frameworks with a decentralized learning
technique using lightweight CNN to reduce the model com-
plexity for constrained edge devices.

The vanilla FL system applied a centralized aggregation
mechanism, which poses a single point of failure (SPoF)
issue and is vulnerable to distributed denial-of-service (DDoS)
attacks [6]. Moreover, unauthorized clients can perform a
Byzantine attack by sending false data, resulting low-quality
aggregated model. Implementing blockchain in the FL sys-
tem offers advantages in terms of security, trustworthiness,
transparency, data integrity, and provenance in a decentralized
learning environment. Moreover, the blockchain can address
the SPoF problem by performing a decentralized aggrega-
tion scheme in the FL system. In [7], the authors applied
blockchain for training an ensemble federated AMC model
using a simple majority voting method. A FLChain framework
is developed to store local and global models in the blockchain
during aggregation. In another study, the authors [8] imple-
mented a blockchain-based federated learning (BFL)-based
AMC framework with a validity evaluation mechanism. There-
fore, the system can reduce the effect of malicious nodes with
anti-attack capacities. However, in these approaches [7], [8],
low-quality clients can contribute to the FL system, affecting
the reliability of the aggregated model and inhibiting the
convergence of the model. A client selection technique is
required.

This study proposes a blockchain-assisted decentralized
collaborative AMC framework with a lightweight convolution
neural network (CNN) model. The proposed system imple-
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TABLE I
COMPARISON BETWEEN PROPOSED SYSTEM AND EXISTING AMC FRAMEWORKS

Year Technique Ref Method Decentralized
learning

Client
selection

Decentralized
aggregation

Lightweight
model

Authorized
technique

Incentive
mechanism

2020 Centralized [3] IC-AMCNet ✗ ✗ ✗ ✓ ✗ ✗
2022 Centralized [2] OFDMsym-Net ✗ ✗ ✗ ✓ ✗ ✗
2023 Centralized [1] GGCNN ✗ ✗ ✗ ✓ ✗ ✗
2020 Decentralized [7] CNN ✓ ✗ ✓ ✗ ✗ ✗
2021 Decentralized [4] FedeAMC ✓ ✗ ✗ ✓ ✗ ✗
2022 Decentralized [8] BFL-ResNet ✓ ✗ ✓ ✗ ✓ ✗
2022 Decentralized [5] DecentAMC ✓ ✗ ✗ ✓ ✗ ✗
2023 Decentralized Ours BCFedAMC ✓ ✓ ✓ ✓ ✓ ✓
✓: Considered, ✗: Non-Considered

ments an improved accuracy-aware client selection mechanism
(iACSM) to enhance the model performance and reduce com-
munication overhead by selecting high-reputation authorized
mobile device clients. A blockchain-based decentralized ag-
gregation technique uses proof-of-authority (PoA) consensus
and the Interplanetary File System (IPFS) as off-chain dis-
tributed storage for local and global models. The comparison
between the proposed system and existing AMC frameworks
is presented in Table I. The proposed system considers sev-
eral advantages: decentralized collaborative learning, client
selection, blockchain-based trusted decentralized aggregation,
lightweight model for constrained mobile edge devices, au-
thorized technique, and incentive mechanism. Therefore, the
main contributions of this study are as follows:

1) We proposed a BFL-assisted AMC framework called
BCFedAMC to provide a robust, trusted, and light
communication overhead AMC technique with a low-
complexity CNN-based AMC model.

2) We developed a lightweight CNN module utilizing a
factorized convolution structure and grouped convo-
lution configuration. Moreover, a residual connection
configuration was implemented to address the gradient
vanishing issue and improve learning efficiency.

3) We utilized iACSM to select the potential clients to
contribute to the FL environment and collaborated to
provide reliable aggregated model performance. The
proposed client selection technique effectively reduces
the low-quality clients’ effect on the model’s reliability.

4) A blockchain-based trusted decentralized aggregation
mechanism is implemented using PoA consensus and
IPFS as off-chain distributed storage for local and global
models.

5) We introduced a fairness blockchain-based ERC-20 to-
ken incentive mechanism to incentivize the selected FL
clients for motivating client contributions.

The remaining sections of this study is structured as fol-
lows: Section II presents the decentralized collaborative AMC
framework for next-generation wireless networks, followed
by the BLF-based AMC with trust-decentralized aggregation
and incentive mechanisms in Section III. Simulations and
discussions are carried out in Section IV, and Section V
provides this study’s conclusion and future works.

II. DECENTRALIZED COLLABORATIVE AMC FOR
NEXT-GENERATION WIRELESS NETWORKS

A. Problem Formulation

The recent DL-based AMC frameworks use centralized
DL scenarios [1]–[3] to train the data on the cloud server.
However, this technique has communication overhead, requires
more computing resources, and poses security issues. To over-
come the centralized DL-based AMC issues, FL-based AMC
frameworks were applied to enable privacy-preserving learning
techniques on mobile edge devices [4]. However, a vanilla
FL technique uses a centralized aggregation, is vulnerable to
DoS/DDoS attacks, and poses a SPoF issue. Implementing
blockchain in the decentralized collaborative AMC [7], [8]
tries to address these issues. Blockchain provides security,
trustworthiness, and transparency capabilities through a de-
centralized aggregation. Therefore, the BFL-based AMC with
a lightweight model can enable a trusted AMC framework for
constrained-resource wireless devices in decentralized environ-
ments. Moreover, the integration client selection technique and
incentive mechanism to motivate potential clients to contribute
to the FL system is still subject to be addressed.

B. Proposed Blockchain-assisted Decentralized Collaborative
AMC

This study proposes a blockchain-assisted decentralized
collaborative AMC framework to address security, SPoF, and
vulnerability of DoS/DDoS issues for centralized aggregation
scenarios in the recent decentralized AMC environments. The
proposed system provides robust client selection, blockchain-
based trusted decentralized aggregation, and a fairness ERC-
20 token-based incentive mechanism in decentralized collab-
orative AMC for next-generation networks. The detail of the
proposed system is presented in Fig. 1. Mobile devices register
to the blockchain network and perform local training using
local datasets. The aggregation server aggregates the local
model from the mobile devices and calculates the global
model. A smart contract is developed to store and access the
models in or from the off-chain and on-chain.

C. Signal Modeling for AMC

AMC is performed in the receiver to identify the modulation
type of received signals in software-defined radio (SDR)-based
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Fig. 1. Blockchain-asssited Decentralized Collaborative AMC Framework in Massive MIMO-OFDM System for Next-Generation Networks

communications. The received signal is modeled with a time-
varying carrier phase offset (CPO) and additive white Gaussian
noise (AWGN), expressed as

q(r) = αe
jθcp(r) + n(r), r ∈ [0, R − 1], (1)

where [p(r)]R−1
r=0 denotes the transmitted signal, [q(r)]R−1

r=0
represents the received signal, and [n(r)]R−1

r=0 expresses the
AWGN as the complex-valued signals. Moreover, α and θc
represent the channel gain and the CPO, respectively. The
channel gain α follows a Rayleigh distribution within the range
of [0, 1]. Concerning the signal model mentioned earlier, the
received signal can be separated into its real and imaginary
components, which can be written as

I = [real (q(0)) , real (q(1)) , .., real (q(R − 1))] , (2)
Q = [imag (q(0)) , imag (q(1)) , .., imag (q(R − 1))] , (3)

Here, the in-phase and quadrature parts are represented by I
and Q, respectively. The training or testing samples consist of
I and Q, denoted as R = [I;Q], commonly referred to as the
IQ sample.

D. Decentralized Collaborative AMC with Client Selection

The proposed decentralized collaborative AMC framework
comprises computing nodes and the aggregation coordinator.
The computing nodes are wireless mobile devices that act
as FL clients, denoted as C = {C1, C2, C3, ...CN}, where
Ci (i = 1, 2, 3, ...N) are the i−th wireless devices. The com-
puting nodes Ci handle the local training using local data Di,
where Di represents the local data wireless device Ci and
∣Di∣ = Ni. Based on the value of [δi = di

d1+d2+d3,..+dn
], where

di is data size of resources Di. The aggregation coordinator
Ac collects the updated local model ωr

i from Di to perform a
client selection mechanism and aggregation process to calcu-
late the global model using a particular aggregation algorithm.

This system applied an iACSM technique to select high-
reputation clients with high-accuracy histories. Subsequently,
only the local model parameters from the selected clients will
be calculated for the aggregation process. The Ac performs
an average aggregation algorithm and generate a global model
ω
r
gt+1 with selected clients (FedAvg-iACSM), expressed as

ω
r
g(selected,t+1) =

N

∑
i=1

di
d
ω
l
it+1 . (4)

The iACSM technique considers the reevaluation mechanism
to enhance the federated AMC model performance with
maximized model generalization. The reevaluation process is
periodically performed by conducting local training for all
available clients, including selected clients. This mechanism
enhances our previous client selection technique [9], which
has limitations for model generalization issues.

E. Lightweight Federated CNN-based AMC Model

This study proposes a lightweight CNN-based AMC model
in the FL environment, as shown in Fig 2. The proposed model
is conducted by composite group convolution (CGC) and
deep composite group convolution (DCGC) modules to extract
the features. These modules utilize a factorized convolution
configuration, residual connection, and grouped convolution
to generate more deep features and provide low computational
complexity. The normalized IQ samples need to be reshaped
into I ∈ N

2 × 128 × 1 dimension as the input feature of the
model. Subsequently, the feature is fed into the stacked (1 × 3)
and (3 × 1) composite convolution layers, each utilizing 8
kernels. The composite convolution process involves convo-
lution, batch normalization, and ReLU activation layers. After
ReLU activation, a (2 × 2) max pooling layer is used to reduce
the feature dimensions. Furthermore, a residual connection
with (1 × 1) composite convolution of 8 kernels is used to
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Fig. 2. Proposed lightweight CNN-based model for decentralized AMC framework: (a) main proposed model, (b) CGC module, and (c) DCGC module

resist the network model from vanishing gradient issues and
enhance learning efficiency. The additional operation between
stacked convolution and residual connection can be presented
as follows:

F
C
add = F

C
(3×1) (FC

(1×3) (I)) + F
C
(1×1) (I) , (5)

where I , FC
add, FC

(3×1) (FC
(1×3) (I)), and F

C
(1×1) (I) denote as

the input of the model, output of the additional operation,
stacked composited convolution, and (1 × 1) kernels of resid-
ual connection, respectively.

Afterward, the output of F
C
add feature is performed to

the CGC module that consists of two flows (1 × 3) and
(3 × 1) composite grouped convolution of 16 kernels. These
convolutions are divided into four groups to extract more deep
features. A concatenate layer combines all the features and
enhances feature diversity. The concatenated feature maps can
be presented as:

F
GC
concat = χ (FGC

(3×1) (FC
add) , FGC

(1×3) (FC
add)) , (6)

here, χ represents concatenate, F
GC
(3×1) (FC

add) detonates
(3 × 1) grouped composite convolution and F

GC
(1×3) (FC

add)
presents (1 × 3) grouped composite convolution operations.
Following the concatenation, the expanded feature fed to
(1 × 1) composite convolution, (2 × 2) max pooling, and
residual connection. This model consists of two CGC modules,
and the second CGC module’s output FCGC2

out can be presented
as:

F
CGC2
out = FCGC2 (FC

(1×1) (FGC
concat) + F

C
(1×1)) , (7)

where F
C
(1×1) (FGC

concat) + F
C
(1×1) presents the output of first

CGC module. Subsequently, the extracted feature is fed to the
DCGC modules. The proposed model consists of two DCGC
modules that are employed by (1 × 3) and (3 × 1) grouped

composite convolution with 32 kernels, (1 × 1) composite
convolution, (2 × 2) max pooling, and a residual connection
unit. The output feature maps of each DCGC module can be
presented as follows:

F
DCGC1
out = F

GC
(1×3) (FC

(1×1) (FDCGC1
concat )) , (8)

F
DCGC2
out = FDCGC2 (FDCGC1

out ) + F
GC
(3×1) (FC

(1×1)) . (9)

where F
DCGC1
out and F

DCGC2
out denote the output of the first

and second DCGC modules, respectively.

III. TRUSTED BFL-BASED AMC FRAMEWORK WITH
INCENTIVE MECHANISM

A. Blockchain-based Decentralized Aggregation
The group of miners in the blockchain network layer

is represented as M = {M1,M2,M3, ...MNm
}, where

Mj (i = 1, 2, 3, ...N) is the j-th of the miner and Nm is the
number of miners. Miner Mj is randomly assigned to node Di.
Moreover, i and j related to the node address addi,j in the
blockchain. In every communication round, the updated local
model is stored in the IPFS and a URIlocal is generated and
uploaded in the blockchain by accessing the smart contract
(StoreLocalModel function). The miners received a URI
from the client and verified the transaction. Subsequently,
the blockchain performed the PoA consensus to generate a
block. The smart contract provides four functions, including
StoreLocalModel, StoreGlobalModel, AccessLocalModel,
and AccessGlobalModel. The Ac collects the updated local
model W = {ωl

1, ω
l
2, ω

l
3, ...ω

l
add} from the selected clients by

accessing the IPFS based on the node address add using the
output of AcessLocalModel function. The aggregated result
is stored in IPFS, and URIglobal is saved in the blockchain
by accessing StoreGlobalModel function. For further local
training, the Ac shares an updated global model with the
clients as the output of the AccessGlobalModel function.
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(a) (b) (c)

Fig. 3. Classification performance of the proposed model with (a) different kernel size, (b) different number of CGC module, and (c) different number of
DCGC module

B. ERC-20 Token-based Incentive Mechanism

This study integrates the iACM technique with an incentive
mechanism to motivate high-quality clients to contribute to
the decentralized collaborative learning system. In each round,
the selected clients of the iACM technique results receive
an incentive token to compensate the client’s resources for
local training usage. The Ac deploys smart contracts con-
taining TokenGeneration and TokenTransfer functions to
implement this incentive mechanism. The TokenGeneration
function is used to deposit a specific number of tokens.
Moreover, For incentivizing, the Ac transfers the token using
the TokenTransfer function to the selected clients’ Ethereum
wallet address.

TABLE II
COMPARISON OF THE PROPOSED MODEL WITH DIFFERENT AMC MODELS

Model Average Accuracy Time-cost Trainable Parameter
CNN [7] 83.00% 0.065 s 287,434
IC-AMCNet [3] 83.40% 0.048 s 625,073
Proposed 86.80% 0.022 s 17,090

IV. EXPERIMENTAL AND RESULTS

This system uses the modulation classification DeepSig
RadioML 2016.10b dataset [10] to analyze the performance of
the proposed BCFedAMC system. This dataset was collected
using GNURadio, which has ten classes (8PSK, AM-DSB,
BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK, and
WBFM) with 1, 200, 000 samples. A range of signal-to-noise
ratios (SNRs), varying from −20 dB to 18 dB with a 2 dB
interval, is employed. This study utilized the Flower frame-
work to develop an FL-based AMC model using TensorFlow.
This simulation applied the Adam optimizer with a learning
rate of 0.0001 and 50 as the number of training epochs
for training configuration. The public blockchain built on
Ethereum employs the PoA consensus mechanism to establish
a trustworthy and decentralized aggregation technique.

A. Classification Performances

As shown in Fig. 3, the classification performance of the
proposed model is analyzed with different scenarios. Fig. 3(a)

presents the comparison performance regarding kernel size
used for the composite convolution layer in the model. Based
on this result, (3 × 1) kernel size achieves the highest clas-
sification accuracy. To investigate the effectiveness of two
main modules (CGC and DCG) of the model, Fig. 3(b) and
Fig. 3(c) present the CGC and DCGC modules architecture
investigation results. In this investigation, we analyze various
number CGC and DCGC module architectures. Two CGC and
two DCGC modules architecture that performs high accuracy
for all SNRs. Fig. 4 presents the robustness of the proposed
iACSM technique and comparison with state-of-the-art client
selection techniques. Based on the results in Fig. 4(a) and
Fig. 4(b), the highest accuracy is achieved using 7 selected
clients with perform reevaluation every 5 round. Fig. 4(c)
shows the comparison of proposed iACSM performance with
various client selection techniques (random, loss-based, and
ACS [9]). Based on this comparison, the proposed iACSM
outperforms other client selection techniques with achieved
high accuracy. The comparison performance of the proposed
model with different models for 18 dB SNR is shown in Ta-
ble II. The proposed model outperforms state-of-the-art AMC
models with an average accuracy of 86.80% and computing
time of 0.022 s. Moreover, the proposed model provides a
low-complexity structure with 17, 090 trainable parameters.

TABLE III
BLOCKCHAIN-BASED DECENTRALIZED AGGREGATION PERFORMANCE

WITH DIFFERENT CONSENSUS

Consensus Transaction Time (s)
Store Global

Model
Store Local

Model
Access Global

Model
Access Local

Model
PoA 11.7741 11.2256 0.0687 0.0538
PoW 14.9844 14.5875 0.1018 0.1205

TABLE IV
ERC-20 TOKEN-BASED INCENTIVE MECHANISM PERFORMANCE

Blockchain
Testnet

Transaction Time (s)
Generate Token Transfer Token

Georli 13.9508 12.4970
Sepolia 12.7123 11.8779
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(a) (b) (c)

Fig. 4. Classification performance of BCFedAMC with (a) different number of selected clients, (b) different number of reevaluation number, and (c) different
client selection technique

B. Blockchain Performance for Decentralized AMC

The efficiency of the proposed decentralized aggrega-
tion technique with various consensus algorithms was eval-
uated by assessing the transaction time. The performance
of blockchain-based decentralized aggregation with different
consensus mechanisms is shown in Table III. The evaluation
compares the transaction time between PoA and proof-of-work
(PoW) consensus. The measurement outcomes reveal that the
PoA consensus outperforms the PoW consensus regarding
transaction time across all function operations involved in
the decentralized aggregation process. The PoA consensus
exhibits a transaction time of 11.7741 seconds for storing the
global model while storing the local model takes 11.2256
seconds. Accessing the global model requires only 0.0687
seconds, and accessing the local model takes 0.0538 seconds
using the PoA consensus. Due to its exceptionally low latency
and energy efficiency performance, the PoA consensus is
selected for decentralized aggregation in the FL environment.
Table IV presents the ERC-20 token-based incentive mech-
anism performance. The incentive mechanism has a lower
transaction time when tested in Sepolia Tesnet, with 12.7123
seconds for token generation and 11.8779 seconds for token
transfer.

V. CONCLUSION

In this letter, we propose the BCFedAMC framework,
a blockchain-based federated AMC technique that provides
trusted decentralized aggregation using the PoA consensus
algorithm. An iACSM technique was implemented to address
the communication overhead in the vanilla FL technique.
An ERC-20 token-based incentive mechanism was deployed
to incentivize the selected FL clients for motivating client
contributions. The blockchain-based decentralized aggregation
performs well with a low transaction time of 11.7741 seconds
for storing the global model, 11.2256 seconds for storing
the local model, 0.0687 seconds for accessing the global
model, and 0.0538 seconds for accessing the local model
when using PoA consensus. For future work, consider delay-
tolerant blockchain networks with homomorphic encryption

for secure aggregation mechanisms in a trusted federated AMC
framework.
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