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Abstract—The reliability of Industrial Internet of Things (IIoT)
systems requires robust fault detection, which can be achieved
with AI. However, the current centralized learning approach
is inefficient. Federated Learning (FL) solves this problem by
enabling distributed training without exposing individual infor-
mation. This article proposes a parameter aggregation technique
for bearing fault detection in IIoT using a lightweight smart
contract with a PoA-based blockchain consensus. The findings
indicate that the proposed system provides a secure aggregation
process with an accuracy of 94.00% and a processing time of
1.54 s, which is suitable for the IIoT environment.

Index Terms—Bearing fault detection; blockchain; federated
learning; industrial internet of things;

I. INTRODUCTION

The Industrial Internet of Things (IIoT) applies connected
technology to monitor industrial processes and manufacturing,
and fault detection is a critical component of IIoT [1]. Sensors
and monitoring devices continuously monitor equipment, sys-
tems, or processes, transmitting data to a central control system
[2]. Fault detection algorithms rely on advanced technologies
such as Artificial Intelligence (AI) and predictive analytics to
analyze data from multiple sources, identify potential faults,
and take corrective action [3]. AI-based fault detection in
IIoT can enhance industrial systems’ efficiency, reliability,
and reduce maintenance costs. The IIoT environment typically
uses centralized learning, which involves collecting data from
multiple sensors and transmitting it to a single server for
analysis. However, this approach has limitations, such as
increased network latency and traffic overhead, data security
and privacy concerns, and the risk of single points of failure.
The large volume of data generated in IIoT systems can also
make it impractical to transmit all data to a central location
for AI model updating [4].

Federated Learning (FL) is a decentralized training tech-
nique that addresses the limitations of centralized learning
in the IIoT environment. FL allows distributed training to be
performed on the client side, preserving privacy and creating
robust models without sharing client data [5]. However, FL
must consider factors such as device heterogeneity, autonomy,
security, and data distribution [6]. Techniques such as client
selection and implementing security measures such as data
privacy, access control, and encryption can optimize FL in the

IIoT. In our previous work proposed an accuracy-based client
selection method that ranks clients based on the centralized
evaluation [7]. The security of FL is crucial to prevent white-
box attacks that could lead to model corruption. Techniques
such as differential privacy, homomorphic encryption, and
blockchain can mitigate these attacks. Blockchain offers de-
centralized and secure parameter aggregation by using various
consensus mechanisms such as Proof of Work (PoW), Proof
of Stake (PoS), and Proof of Authority (PoA), making it a
suitable option for FL in IIoT environments [8], [9].

A blockchain network can be used to store the updated
parameters, and an incentive mechanism can be applied to
reward clients for their contributions [10]. However, the ef-
ficiency of these techniques in the IIoT environment is still
not fully explored, and a secure and efficient approach is
needed to accommodate various types of machinery. The main
contribution of this article is detailed as follows:

1) We propose a blockchain-based secure parameter ag-
gregation architecture for FL in IIoT. In the proposed
design, every procedure related to the model parameter
is executed on the blockchain network for security
purposes.

2) We propose an efficient Deep Learning (DL) called DC-
MLP, a multilayer perception model. It is designed to
address fault detection challenges in IIoT FL settings.
We prioritize detection accuracy without sacrificing in-
ference time.

3) To evaluate the performance and reliability of the pro-
posed blockchain-based secure aggregation mechanism
using the DC-MLP model, we conduct an extensive
evaluation over 5-fold cross-validation. The evaluation
is performed on both public and private architectures.

The structure of this article is as follows: Section II covers
related literature and any research gaps. Section III describes
the proposed blockchain-based parameter aggregation meth-
ods, the DL model, the dataset, and the simulation setup.
Section IV presents the results and discussions of the study,
while Section V concludes the paper and outlines future
research opportunities.
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Fig. 1. The overall design of the secure aggregation procedure for FL using a PoA consensus.

II. RELATED WORKS

A. Secure Aggregation in Federated Learning

The use of encryption is a well-known technique to pre-
vent data leakage and protect information. In [11], the au-
thors propose using Advanced Encryption Standard (AES),
a symmetric-key encryption method, to encrypt and decrypt
updated local parameters in FL. However, AES may not be
as secure with increasing clients and communication rounds
as the same key is used. Another approach, using Functional
Encryption (FE), was studied in [12], where AONT was
utilized to secure partial information of the updated local
parameters through matrix transformation. The authors showed
that the FE scheme is more efficient than the Homomorphic
Encryption (HE) scheme. Despite the benefits of encryption,
vulnerabilities still exist, such as an attacker intercepting
encrypted packets or collecting downloaded global parameters.

B. Blockchain-based Secure Aggregation

Blockchain provides decentralized access to global param-
eters and update functions through smart contract functions,
making it a suitable tool for federated learning. However, the
implementation of blockchain in IIoT is still a new area and
poses several challenges, such as ensuring network efficiency,
security, and privacy. Previous studies have mainly focused
on general IoT implementation without considering the time

constraints of IIoT. Some studies have proposed blockchain-
based solutions, such as ChainFL [13] and Shapley value [14],
but their impact on FL efficiency has not been fully evaluated.
Additionally, some studies have proposed secure aggregation
in trusted execution environments, but these approaches may
not be suitable for IIoT networks due to their high processing
time [15]. This paper proposes a blockchain-based aggregation
mechanism that ensures security and efficiency in FL for IIoT
environments, with an average processing time of less than
one second.

III. PROPOSED SYSTEM

A. System Model

The system model proposed in this work is shown in Fig.
1. It comprises four main components: edge nodes, fog server,
FL server, and blockchain networks. The proposed architecture
is specifically designed to address TSP issues in the IIoT
environment by performing distributed learning for privacy.
It also includes a certificate authority (CA) for public key
infrastructure (PKI) and a blockchain network for trust and
security problems. The edge nodes are grouped into n groups
denoted by E = 1, 2, 3, ..., n, and they are connected to a fog
server, which is connected to an FL server. The CA is used
to generate private and public keys for each participant in the
FL process. The FL technique is implemented with a PoA-
based consensus to provide secure information transmission
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Fig. 2. Communication flow of the proposed PoA-based FL for intelligent fault classification.

on the network. The model parameter is fully stored on the
blockchain network, supervised by numerous validators, using
the PoA approach.

Tr = Tstoresb + Tcs + Ttrain + Tcollecteb + Tstoreeb . (1)

The equation (1) calculates the total delay for a single
communication round in the proposed architecture. It consists
of several components, including the time needed to store
global parameters on the blockchain network (Tstoresb ), the
time required by the FL server to select participants based on
their status (Tcs), and the time needed to train the local model
(Ttrain), which consists of three sub-processes: parameter
download from the blockchain (Tcollecteb ), local training, and
parameter update to the blockchain after the local training
process is completed (Tstoreeb ). Finally, the FL server collects
all updated parameters from the blockchain network within the
Tcollectsb interval before the aggregation process.

B. Proposed Blockchain-based Secure Aggregation

The communication process for the proposed blockchain-
based FL for intelligent bearing fault detection is shown in Fig.
2. The proposed system is designed to maintain distributed
learning while preserving privacy for each FL participant.
In this study, we assume that the local training for FL is
carried out on the edge node connected to the fog server and
FL server. Instead of sharing parameter information directly
through a traditional network, we use a PoA-based network
as the blockchain consensus. There are several factors that
support the use of a PoA-based blockchain in this study,
including:

• PoA consensus is exceptionally lightweight compared
to the other consensus algorithm (e.g., PoW). A fast
transaction time is crucial for the FL process because the
updated parameter needs to be aggregated within a short
period of time. The adoption of PoW is not sufficient to
cover these requirements.

• Compared to the PoS ‘algorithm, the PoA consensus
algorithm still provides faster transaction times while also
providing sufficient security features.

• Parameter aggregation in FL requires fast data transmis-
sion to shorten the federation process. Thus, the PoA-
based blockchain is suitable for the use case scenario
investigated in this work.

The algorithm for the proposed PoA-based secure parameter
aggregation in the FL process is described in Algorithm 1.
Initially, some parameters and functions are initialized along
with the smart contract. Then, the FL server performs the
federation by iterating through communication rounds tth.
In each round, the FL server chooses a particular client
who is validated by the CA and stores the global parameter
with a round number on the blockchain. Next, the selected
participants collect the global parameter from the blockchain
and perform local training to get updated local parameters
using the following equation:

ωk
l ← ωg − η▽ℓ (ωg; b) . (2)

where the updated local model ωk
l from client k is calculated

based on the global model ωg and training results from a batch
b of local data β with a learning rate η.

Every client k in the set of clients K is assigned a timeout
interval of Ti = 600 seconds. If a client fails to transmit
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Algorithm 1: PoA-based Parameter Aggregation
1: Initialize global DL parameter: ωg

2: Initialize other parameters: C,K, t, b, η, e
3: Initialize the client’s private and public keys
4: Initialize the client’s blockchain address

5: FL Server executes:
6: for each communication round t do
7: Kvalid ← validated client from CA
8: Sk ← Kvalid . C
9: Store initial global parameter ωg, t to PoA blockchain

10: for each k ∈ Sk in parallel do
11: LocalTraining(ωg, t)
12: end for
13: ωk ← Collect parameter from PoA blockchain
14: ωgt+1

← aggregate new global parameter using
equation (3)

15: Acc, F1 ← globalmodel(ωgt+1).evaluate()
16: end for

17: Function LocalTraining(ωc, t)
18: ωl ← Collect ωg from PoA blockchain
19: for local epoch 1 to e do
20: for batch b ∈ B do
21: ωl ← update local parameters using equation (2)
22: end for
23: end for
24: Store updated local parameter ωl, t to PoA blockchain

their updated local model parameters ωl within this time, they
will not be considered for the parameter aggregation process.
Then, the FL server retrieves the updated local parameter from
the blockchain network. After collecting all the updated local
parameters with a specific round number from the blockchain
network, the new global model parameter aggregation process
is calculated using the following equation:

ωgt+1 ←
K∑

k=1

η k

η
ωl

k
t+1 . (3)

C. Proposed DC-MLP Model

In order to facilitate the intelligent fault detection system
proposed for the IIoT environment, a robust and efficient
DL model has been designed to extract information from the
bearing sensor data and determine the actual condition of the
machinery. The overall architecture of this DL model, called
the deep concatenated multilayer perceptron (DC-MLP), is
shown in Fig. 3. The model is constructed entirely from dense
layers, with two extraction flows and a residual connection
for better feature extraction. The first extractor uses a larger
number of neurons in each dense layer, while the second
extractor has a smaller number of neurons. A residual con-
nection is added to allow gradients to flow directly through
the network without being affected by activation functions.
Additionally, a concatenation layer is used to merge three

Fig. 3. The overall architecture of the proposed DC-MLP model.

different inputs into a single output, which is then passed
through Fully Connected (FC) and classification layers. In
addition, two different activation functions were used. The
first activation function is the rectified linear unit (ReLU),
which operates based on the threshold value and eliminates the
vanishing gradient problem. The second activation function,
SoftMax, is applied at the end of the proposed DL model.
SoftMax is selected due to its ability to generate an output
with the sum of the probabilities equal to one.

D. Dataset and Simulation Details

The proposed system’s performance was evaluated using a
dataset from the Case Western Reserve University (CWRU)
bearing data center, and the effectiveness of the DC-MLP
was compared to state-of-the-art studies. The dataset consists
of data collected from a machinery motor equipped with a
torque transducer, dynamometer, and control electronics. The
data was captured at two different sampling rates: 12,000 and
48,000 samples per second. MATLAB was used to process the
collected data, which was saved in the .mat file format. The
study focused on a shaft rotation speed of 1,772 rpm, and the
accelerometers had a sampling frequency of 48 kHz.

The PoA-based FL for intelligent fault detection proposed in
this paper was implemented using the Flower framework [19].
Flower is a framework designed for conducting large-scale FL
experiments with heterogeneous data distribution among FL
clients. It is implemented in the Python programming language

1072



(a) Accuracy (b) Loss

Fig. 4. FL performance comparison among different DL models investigated in this work with K = 20 clients and C = 0.75 fraction size.

TABLE I
PERFORMANCE EVALUATION OF NUMEROUS DL MODELS BASED ON 5-FOLD CROSS-VALIDATION TESTED WITH K = 20 AND C = 0.75.

DL Model Accuracy (%) Loss (cross-entropy) Precision (%) Recall (%) F1-Score (%)

CNN [16] 93.26 ± 1.38 29.71 ± 5.89 93.07 ± 1.32 93.38 ± 1.15 93.06 ± 1.32

MLP [17] 74.86 ± 7.52 134.79 ± 6.10 77.82 ± 7.70 74.05 ± 7.76 71.00 ± 8.62

DiagNet [18] 28.30 ± 25.96 185.33 ± 61.63 20.89 ± 27.36 28.78 ± 25.79 20.99 ± 26.47

LSTM 47.17 ± 12.95 136.80 ± 16.85 42.63 ± 12.95 47.01 ± 12.74 41.36 ± 13.44

CNNMLP 61.95 ± 9.10 107.21 ± 13.99 58.86 ± 7.63 62.44 ± 8.05 56.17 ± 9.03

Proposed 94.00 ± 1.30 19.54 ± 5.62 94.43 ± 1.05 93.98 ± 1.27 94.00 ± 1.29

and can be modified to fit the proposed architecture in this
work.

Moreover, in the blockchain-based on PoA, multiple tools
are used, including Web3 libraries, which allow interaction
with the blockchain network through a Web3 provider, such
as Infura or Alchemy. These libraries are available in Python,
making it easy to synchronize with the Flower framework. The
Ganache library is utilized to manage account creation in local
deployment, while five distinct accounts are used in the public
blockchain infrastructure. Furthermore, the smart contract for
the suggested architecture is developed, deployed, and tested
using the Remix Integrated Development Environment (IDE).

IV. PERFORMANCE EVALUATION

The evaluation process involves a comparison of the pro-
posed DC-MLP model with state-of-the-art DL models, in-
cluding CNN [16], MLP [17], and DiagNet [18]. Furthermore,
the performance of vanilla models of LSTM and CNNMLP
architectures is also examined. The evaluation setup involves
20 clients with 0.75 fraction sizes and 100 communication

rounds. The performance evaluation results in terms of ac-
curacy are presented in Fig. 4(a). The proposed DC-MLP
model demonstrates exceptional performance, outperforming
other DL models with a significant average accuracy of
94.00 ± 1.30%. It is also noted that the proposed model
can achieve higher performance with fewer communication
rounds, indicating a faster model convergence rate. Addi-
tionally, Fig. 4(b) demonstrates that the proposed DC-MLP
model has the best categorical cross-entropy loss performance
compared to other DL models, with an average loss value of
19.54± 5.62.

Additionally, a comprehensive performance evaluation is
carried out using precision, recall, and F1-score metrics. The
results are presented in Table I, which shows the overall per-
formance of five DL models, including the proposed DC-MLP,
based on the average value over 5-fold cross-validation. The
proposed DC-MLP achieved the highest F1-score performance
of 94.00±1.29%, followed by CNN and MLP with an average
F1-score of 93.06± 1.32% and 71.00± 8.62%, respectively.
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V. CONCLUSION AND FUTURE WORK

The article outlines a technique for secure and efficient
parameter aggregation in the FL process using a PoA-based
consensus and investigates public and private blockchain
network implementations. A DL model named DC-MLP is
developed to achieve fast processing times for classifying
bearing status. The system is evaluated on a real-world bearing
fault dataset using 5-fold cross-validation and achieves 94.00%
accuracy compared to state-of-the-art DL models for bearing
fault detection using the FL approach. The secure and efficient
parameter aggregation proposed in this work is evaluated with
an average transaction time of 1.54 s and 24.39 s for private
and public blockchain networks, respectively, under various
numbers of FL participants. The findings suggest that the pro-
posed system is well-suited for FL implementation in the IIoT
environment using a private PoA-based blockchain network.
Future work should explore optimization techniques that are
tailored to the FL process in the IIoT environment, such as
client selection and local training, to improve efficiency.
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