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Abstract—This paper proposes optimizing unmanned aerial
vehicle (UAV) navigation through a non-uniform b-spline
trajectory. The safety of the UAV and successful trajectory
execution while avoiding obstacles become paramount in sce-
narios involving enemy tracking. The proposed system offers
optimization in UAV navigation by adjusting time and velocity
to address smooth and safe path planning in a dynamic environ-
ment for tracking UAV enemies. The tracking enemy relies on
a depth camera to classify the enemy with the environment
and calculate the distance. Specifically, the UAV capitalizes
on the flexibility and smoothness of Non-Uniform B-Spline
curves, enabling UAVs to navigate complex environments with
precision. The approach is evaluated through comprehensive
the experimental result.

Index Terms—UAV navigation, non-Uniform B-Spline tra-
jectories, trajectory optimization, obstacle avoidance, tracking
UAV.

I. INTRODUCTION

In recent years unmanned aerial vehicles (UAVs) in
contemporary society have revolutionized various sectors,
including surveillance, logistics, defense, and agriculture [1].
In light of these advancements, the critical imperative in this
context is the development of obstacle sensing and avoidance
capabilities to ensure the safe navigation of tracking UAV
enemies in dynamic environments involving intricate and
rapidly changing conditions, where the targeted drone enemy
may exhibit swift and unpredictable movements. As a result,
UAVs must adapt their trajectories and strategies in real-
time to effectively chase and neutralize these drone threats.
This dynamic interplay between UAVs and drone enemies
introduces a heightened complexity, requiring advanced al-
gorithms and responsive control systems to ensure successful
tracking and engagement.

Tracking and engaging an enemy involves crucial steps,
each contributing to the operation. At the forefront of these
steps is detecting the target itself, which is the foundation
for subsequent tracking and avoidance maneuvers. Several
methods [2]–[6] have been proposed. In [3] object detection
algorithms, predominantly leveraging Convolutional Neural
Networks (CNNs). Within target detection, YOLO, SSD, R-
CNN, and Faster R-CNN have emerged as prominent play-
ers, renowned for their exceptional balance between accu-
racy and real-time processing capabilities. In [4] undertook
a comparative assessment of target detection methodologies,

Fig. 1: Tracking UAV Enemy.

highlighting the importance of considering onboard em-
bedded GPU systems, off-board GPU ground stations, and
onboard GPU-constrained systems when evaluating frame
rates and accuracy. In [5] addressing constraints imposed
by transmission capacity and limited onboard computing
power, the integration of the Intel Movidius Neural Com-
pute Stick (NCS) alongside Raspberry Pi proved impactful,
with Mobilenet-SSD (5FPS) emerging as a superior choice
compared to YOLO (1FPS). Nonetheless, object detection
becomes essential for identifying the intended target, while
configuring navigation settings becomes necessary for facil-
itating the pursuit of drone enemies.

Numerous strategies [8]–[12] within UAV trajectory gen-
eration have emerged, addressing the intricacies of this
multifaceted challenge. In [9], [10] to overcome the dif-
ficulties presented by these obstacles, the A* algorithm is
employed. This algorithm serves the purpose of preserving
the distance between points and searching for the shortest
path from the UAV current position. Despite the significant
effort put into this field, two critical issues remain unre-
solved. In [11] concerns the practical constraints of time
and computational resources that come with UAV trajectory
planning. In [12], current methods suggest optimizing the
A* algorithm for path planning trajectory. However, the A*
algorithm’s performance is suboptimal when it comes to
generating trajectories that are both smooth and maintain
a safe distance from obstacles. This proposed system offers
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Fig. 2: Tracking UAV enemy scenario with consider distance of obstacle and UAV enemy.

a solution to overcome this challenge involving integrating
object detection and smooth trajectory navigation using
non-uniform b-spline. The main contributions of this paper
are summarized. First, the object detection is formulate to
maintain the UAV focus on the target in mission mode
tracking UAV enemy based on YOLO V5. Second, a Non-
uniform B-spline, a mathematical technique is utilized to
optimize the UAV time and velocity while pursuing the UAV
enemy. This combination of object detection and trajectory
optimization aims to enhance the tracking accuracy and the
smoothness of the UAV movement while chasing the UAV
enemy.

II. SYSTEM MODEL

This section presents a comprehensive overview of the
functionalities and capabilities of an UAV equipped with a
UAV enemy detection system. The objective is to understand
the UAV advanced features to identify and detect aggressive
UAV enemies.

A. Detection Algorithm

Object detection is designed based on recognizing UAV
enemy. The proposed UAV call patrol UAV through a depth
camera mounted on UAV. Fig.1 shows the depth camera
calculating distance for obstacles and tracking UAV enemy.
Moreover, object detection mainly comprises the Focus
module, CBL module which is composed of a convolution
layer, batch normalization layer, Concat module, and Up-
sample module [5].

The detection algorithm starts with input from a depth
image to classify the UAV enemy. The classification result
probability for UAV enemy detection. Tracking the UAV
enemy relies on a specific position based on a centroid
bounding box. In algorithm 1, edge ed given by depth

Algorithm 1: Enemy Detection
Input : ed,probobd,bxcur

Output: xob,yob,zob
th ← probobd;
pos ← bxcur;
while true do

Imframe ← Imcur;
probpos ← bxcurDetectEnemyImcur;
if probpos > th then

xob = centroidx;
yob = centroidy;
ed ∈ ROI CDF (c(t+ 1)) =
CDF (c(t)) + CDF (c(t− 1));
zob = CDF (c(t+ 1));
if zob < Endistance then

end
return;

end
end
Px = zob;
Py = yob;
Pz = xob;
return probpos;

camera and pre-processing to probability probposfrom object
detection to get current bounding box bxcur. The centroid
gets position xob and yob of the image frame during UAV
patrol detected UAV enemy. The distance zob from the depth
image frame calculate by extracting the pixel from a region
of interest by object detection. The gaussian smoothing filter
(GSF) is utilized [7]. By the GSF algorithm, the distance
found with calculate the median of distance estimation can
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Fig. 3: UAV enemy detected by object detection.

be written as follow:

g(c(t)) =
e
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2σ2

√
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, (1)
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1

2
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, (2)

where the pixel extracted c(t) inside ROI with cumulative
distribution function CDF to calculate median distance zob
and gaussian error function erf . The goal position is con-
verted by synchronize the position from centroid coordinate
bounding box of UAV enemy Gp. The converter can be
expressed as follow:

Gp =



Px

Py

Pz


 =



zob
yob
xob


 , (3)

B. Navigation Algorithm

The optimization of path planning to navigate UAV pa-
trol track the UAV enemy is crucial. Specifically, after
detecting the position enemy, the UAV patrol keep the
distance between the obstacle and the enemy while planning
the trajectory. Therefore, the preceding forward exploration
employs a discretized control action space. Consequently, the
search process must attain the precise continuous-coordinate
goal state. To mitigate this accuracy concern and enhance
search efficiency, the hybrid A* is utilized [13]. This system
continuously generates a kinematic model. When expanding
the nodes, the paths produced by hybrid A* are able UAV
to pass through the environment. However, the hybrid state
A* is not guaranteed to find the minimal-cost solution
because of the discretization of controls and time, as well
as the effective pruning of all but one of the continuous-
state branches that enter a cell. Therefore uniform B-Spline
is adopted for the advantageous properties, namely local
control and convex hull property and convenient closed-
form evaluation. In this method given n + 1 control point

Fig. 4: Trajectory based on Non uniform-B-spiline.

Q0, Q1, ..., Qn and knot vector {t0, t1, ..., tm}, the B-spline
curve s(t) of degree k is defined as follows:

s(t) =
n

i=0

QiNi,k(t), (4)

Ni,0(t) =


1 if ti ≤ t < ti+1

0 otherwise ,

Ni,k(t) =
t− ti

ti+k − ti
Ni,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
Ni+1,k−1(t).

(5)
To optimize time allocation, the trajectory derivative is

changed as mention in [10]. The Non-uniform B-spline by
independent knot span ∆tm = tm+1 − tm. The velocity V ′

i

and the acceleration A′
i derivated as follow:

V′
i =

k (Qi+1 −Qi)

ti+k+1 − ti+1
, A′

i =
(k − 1)

�
V′

i+1 −V′
i


ti+k+1 − ti+2

, (6)

where, Qi represents the control point of the B-spline at
index i, and k denotes the degree of the B-spline curve.
These equations allow for the determination of the deriva-
tives of velocity and acceleration, which are pivotal for
optimizing the trajectory with respect to time allocation.
The non-uniform nature of the B-spline, characterized by
its independent knot spans, contributes to its versatility in
generating smooth and adaptable trajectories that can ac-
commodate changes in velocity and acceleration, enhancing
the overall performance of trajectory planning algorithms.

III. EXPERIMENTAL RESULT

The evaluation involves the execution of simulations and
onboard experiments to demonstrate the performance of the
proposed framework, with the integration of a depth camera
into this system. In fig.3, the object detection is shown,
and the bounding box is marked with a red square achieve
the probability 59% . In fig.4, during the UAV in mission
mode, a smooth trajectory is generated. In mission mode,
the yellow line represents the primitive trajectory from UAV
enemy, and the red line is the optimized trajectory. These
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TABLE I: UAV trajectory times in mission mode.

Resolution
Trajectory Time(s)

Standard Average Minimum Maximum
Deviation(s) (s) (s) (s)

0.8m - - - -
0.05m 5.947 20 14 27
0.03m 2.0 17 15 19

TABLE II: Path planning searching times in mission mode.

Resolution
Search Time(s)

Standard Average Minimum Maximum
Deviation(s) (s) (s) (s)

0.8m 0.02804 0.06 0.013 0.26
0.05m 0.07602 0.048 0.001 0.141
0.03m 0.00529 0.004 0.001 0.021

experiments aimed to set up the trajectory for the practical
approach applicability within real-world contexts. During
the phase of onboard testing, numerous essential parameters
were specified to ensure a thorough assessment. Notably,
the UAV must maintain a maximum separation of 3 meters
from the UAV patrol to avert collisions with the UAV enemy,
with resolutions of the voxel grid set at 0.8, 0.05, and 0.03.
Additionally, practical constraints guided the establishment
of a maximum velocity of 1.5m/s meters per second and a
maximum acceleration of 2m/s2.

The comparison is conducted on a map measuring 20 × 10
× 5 meters, featuring random placement of several obstacles.
Given the pivotal role of voxel grid resolution in influencing
proposed method performance, distinct resolutions facilitate
an all-encompassing evaluation. The outcomes presented in
table I and table II reveal smoother trajectories and reduced
trajectory and search path planning times, particularly when
employing lower voxel map resolutions until 0.03.

IV. CONCLUSION

In conclusion, this paper has introduced an innovative
approach for optimizing the navigation of UAV by utilizing
non-uniform B-spline trajectories. In scenarios involving
enemy tracking, the safety of UAV operations and the
successful execution of trajectories while circumventing ob-
stacles are paramount concerns. A depth camera is employed
to discern the enemy within the surroundings and ascertain
the distance to facilitate effective enemy tracking. The Non-
Uniform B-Spline curves, chosen for their flexibility and
smoothness, empower UAV to navigate intricate environ-
ments with exceptional precision. In the future, it could
encompass further optimizing the trajectory planning algo-
rithm, exploring additional sensing modalities for enhanced
environmental perception, and extending the framework’s
applicability to collaborative multi-UAV scenarios for im-
proved efficiency and coordination.
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