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Abstract— Approximate query processing has been well established 
for enhancing performance of aggregation queries on ever-increasing 
big data by statistically equivalent approximations. Recent popularity 
of mobile devices creates tremendous spatio-temporal data that 
require different treatment than relational ones. Among spatio-
temporal data, we focus on trajectories in a tabular form and analyzes 
the problem, its requirements, and suggest a general-purpose 
framework for learned approximate query processing by providing a 
common encoding/embedding layer for embracing diverse state-of-
the-art ML models, on top of which resides a probabilistic circuit for 
efficiency and efficacy with error bounds. 
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I. INTRODUCTION 
Ever-growing amounts of spatio-temporal data are 

ceaselessly generated by a variety of devices from IoT sensors 
to hand-held mobile devices and autonomous driving cars. 
Those data have different characteristics from traditional 
tabular or relational data since the dependency along the time 
axis forms their intrinsic meaning.

The approximate query processing (AQP) has become a 
well-established component of big data analytics by fast 
producing statistically equivalent results of exact matching 
[1]. Furthermore, recent development of machine learning 
(ML) and deep learning (DL) technologies opened new 
opportunities in this direction. Although there has been 
proposed a variety of spatio-temporal data analytics methods 
that are based on traditional statistical techniques, ML/DL 
techniques are rarely applied to them, presumably due to the 
idiosyncratic nature of spatio-temporal data. 

This paper analyzes the problem of approximating spatio-
temporal queries using ML & DL, and requirements for 
applying state-of-the-art ML/DL models to AQPs, then 
suggests a general solution with a work-in-progress prototype. 
Among spatio-temporal data, we focus on the trajectories and 
their core operators as a starting point. Finally, we present an 
evaluation strategy and future plan. 

II. RELATED WORKS 
Li et. al., tackle almost the same problem except they use 

sampling on spatio-temporal index for approximation [2]. 
DeepSPACE is a deep learning-based approximate geospatial 
query processing engine that can answer flexible aggregation 
queries while keeping the required state to a small data size 
[3]. NeuroSketch handles range aggregate queries (RAQs) by 
leveraging neural networks [4]. It focuses on modeling queries 
rather than data in a geospatial database environment. Vu et. 
al, suggests a spatio-temporal pattern mining technique for 
LBS [5], and Kim et. al, presents 3D spatio-temporal models 
[6]. To the best of our knowledge, there are no learned spatio-
temporal AQP for queries on relational data with trajectory, 
which guarantees efficiency, efficacy, and error bounds.  

  
Fig. 1. Basic target space and its example 

III. PROBLEM ANALYSIS 
Among a variety of spatio-temporal problems, this paper 

deals with an AQP for aggregate trajectory range query. 

A. Definitions 
Problem: Given a region and/or a time condition in a 

target space, find an aggregation (e.g., count, sum, average) of 
rows satisfying both spatio-temporal and non-spatio-temporal 
conditions. 

Spatio-temporal data are assumed to be a (m+n+1)-
dimensional relational model, ((S1, … , Sm, T), C1, … , Cn) with 
(m+1) dimension spatio-temporal column (Fig 1, left). 

A trajectory is a time-stamped sequence of spatial 
coordinates from a moving object. It can be seen as a curve or 
region in a hypercube. The spatial coordinates can be GPS 
data or check-in points from vehicles or smartphones. 

The dimension of target spaces would be arbitrary. It can 
be a 3D space consisting of latitude, longitude, and time 
dimension (Fig 1, right). It could be a 4D space with latitude, 
longitude, altitude, and time dimension. Each dimension can 
be discrete, continuous, and categorical. 

Querying on k-dimensional relations with spatio-temporal 
columns can be seen as searching in k-dimension space, or 
distinct value estimation problem [2]. 

B. Requirements and Limitations of DNNs 
By using recent deep learning technologies, the following 

methods can be considered for our learned model. 

� Probabilistic: probabilistic circuits [8] (e.g., SPNs [9]) 

� Convolutional (e.g., CNNs): Trajectories can be seen 
as 3D or 4D figures. Currently the spatial dimension 
should be less than or equal to 3 since most 
convolutional models are built for 2D or 3D inputs. 

� Sequential (e.g., RNNs, Transformers): Trajectories 
naturally fit into sequential models due to the time 
dependency. 

While recently developed deep neural networks (DNNs) 
show great representational power, it’s difficult to provide 
uncertainty scores for reliable decision making with efficient 
learning and inference. Furthermore, they cannot provide 
various combinations of conditionals, marginals for 
processing typical select-project-join queries. 
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1 Trajectories on 6/1, after 12:00, intersecting with the area (3,3)-(7,7) 

kisql> select id, name, st_lifetime(st_intersection(position, 
st_importfromwkt('MPOLYGON((2023/06/01 12:00:01,((3,3,7,3,7,7,3,7,3,3))))'))) 
from nam_phone_user1; 
------------------------------------------------------------------------ 
id   name   st_lifetime(…)    
---- ------ ------------------------------------------------------------ 
2    [Kim]  Period[2023-06-01 12:00:07.0000~2023-06-01 12:00:07.0000]  
1    [Nam]  Period[2023-06-01 12:00:03.0000~2023-06-01 12:00:05.0000]  
------------------------------------------------------------------------ 
select row count [2] 
RESULT : 0.000419 

2 Number of trajectories from 5/31, 12:00 to 6/1, 12:11, passing the area (3,3)-
(7,7) 
kisql> select count(*) from nam_phone_user1 where st_passes(position, 
st_importfromwkt('MPOLYGON((2023/05/31 
12:00:03,((3,3,7,3,7,7,3,7,3,3))), (2023/06/01 
12:10:59,((3,3,7,3,7,7,3,7,3,3))))'))=1; 
---------- 
count(*)    
----------  
2           
---------- 
select row count [1] 
RESULT : 0.000356 

Fig. 2. A sample queries on 2 trajectories 

TABLE I.  QUERIES IN PROBABILITY EXPRESSION 

1 Which street is the most likely to have traffic jam at 7pm?
argmaxStreet P(Jam(Street) | 7pm)

2 When is the most likely to have traffic jam in Streetk?
argmaxTime P(Time | Jam(Streetk) = 1)

3 What’s the probability of having traffic jam at Streetk on Monday?
P(Day=Monday, Jam(Streetk) = 1)

4 When is the most likely to have traffic jam along the trajectory of my commute?
argmax P(Time | � )

* Time, Streetk and Day are random variables, Jam(s) returns whether s has traffic jam. 

TABLE II.  OPERATORS 

Type Operators 

Set buffer, difference, intersection, union 
Temporal precedes, equals, meets, overlaps, contains 

Spatio-temporal equals, disjoints, touches, contains, within, crosses, 
overlaps, intersect, relate 

Trajectory enters, leaves, passes, meets, insides 

TABLE III.  SEMANTICS OF TEMPORAL OPERATORS 

precedes(x, y) x=[a, b) precedes y=[c, d) � b <= c 
equals(x, y) [a, b) equals [c, d) � (a=c) and (b=d) 
meets(x, y) [a, b) meets [c, d) � b=c 
overlaps(x, y) ( t [a, b), t [c, d)) or ( t [c, d), t [a, b)) 
contains(x, y) (a<c) and (b>d) 

C. Queries in SQL 
Trajectory queries can be given in SQL statements for 

OGC-compliant, moving object database systems. Figure 2 
shows some SQL statements for Kairos MO SQL [7]. This 
paper analyzes only aggregates with AVG, SUM, COUNT.

D. Queries in Probability Expression 
Most trajectory queries can be represented as probability 

expressions. Table 1 shows some traffic examples, which 
require calculating conditionals and marginals (and joint 
probabilities from them) to answer those queries.  

E. Predicates and Operators 
Apart from comparison and logical operators such as <, =, 

>, !, ‘and’, and ‘or’, spatio-temporal operators or predicates 
should be supported. Major operators supported by OGC-
compliant systems can be summarized as in table 2. Their 
semantics can be formally defined for being applied to ML 

models. For example, the semantics of temporal operators can 
be defined as table 3. 

 

Fig. 3. PC-based Architecture 

IV. SOLUTION 
To provide a general methodology and a framework where 

new models can be easily adopted, we need to introduce a 
common intermediate layer on top of baseline architecture 
[15][16], that generalizes input data, learning/inference 
procedure and underlying subsystems. 

A. Two-Staged Processing 
As mentioned in Section 3-A, data are prepared in 

relational models, ((S1, … , Sn, T), C1, … , Cn), so we need to 
process relational data as well as spatio-temporal (trajectory) 
data. The exact order depends on the result of query planning. 

B. PC-based Architecture 
We chose probabilistic circuits as a front-end model for 

our learned AQP systems because of efficiency, efficacy, error 
bounds and incremental updating [8]. It is proven that any 
decomposable and smooth probabilistic circuit is valid 
probability distribution, and its inference is tractable (linear in 
the size of a PC). By using PCs as front-end, outer model, 
uncertainty scores can be generated, which helps reliable 
decision making. Furthermore, PC-based models can be 
updated partially by modifying only the relevant leaves and 
weights of sum nodes. In general, there can be three types of 
PC-based solution (Fig. 3). 

� PC + PC: Both Spatio-temporal and relational (non-
spatio-temporal) columns are modeled in PCs. Outer 
PC models relations, and inner PC represents 
trajectories. It’s efficient but may lack representation 
power than DNN-based inner models. 

� PC + Transformer: PC front-end with transformer-
based leaves and attention-based weights of sums. The 
intermediate trajectories can also be added to 
positional encodings. 

� PC + Convolution: Trajectories can be seen as 3D or 
4D figures, which naturally fits in convolution-based 
models. Currently the spatial dimension should be less 
than or equal to 3 since most convolutional models are 
built for 2D or 3D inputs. The non-spatio-temporal 
columns are represented in the outer PC model. 

Other types of DNNs not specified above can be connected 
into the outer PC as well. It is also possible to adopt all-in-
one PC models that synthesized with recent DNN concepts 
(e.g., transformer, attention, convolution, etc.). 
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[[[ 0  1  2] [ 3  4  5] [ 6  7  8]] 
[[ 9 10 11] [12 13 14] [15 16 17]] 
[[18 19 20] [21 22 23] [24 25 26]]] 

Fig. 4. An example of linear indexing of (3D) hypercube 

 
Fig. 5. REST API + Pure PC model 

C. Common Layer – Encoding and Embedding 
To make our solution as general as possible, we define a 

common layer that takes charge of encoding and embedding 
so that the downstream subsystems can be independent of our 
framework. We assume that all of the input data are pre-
processed into ‘one row, one trajectory’ format. Many of open 
data such as Uber movements [10] are segment-based, i.e., one 
row is one segment, so that one trajectory can be spread over 
several rows. Those data are assumed to be aligned to 1:1 
format before entering our learned AQP model. 

Users can define the level of detail for each axis. For 
example, GPS data consists of latitude and longitude with 
ranges [-90, 90] and [-180, 180] respectively. They can be 
discretized by truncating below the decimal points or binning. 
Time values can also be discretized or categorized as well 
(e.g., [0, …, 23] hours, morning/afternoon, or Sunday-
Saturday). Such a user-defined LoD value must be given to 
the system configuration. 

Right after the common layer comes a PC-based front-end, 
outer model that summarizes entire calculations including 
query answers and their uncertainty scores.  

For the PC front-end and DNN-based inner models to be 
more efficient and effective for learning and inference tasks, 
the spatio-temporal part of ((Si, T), Cj) is structured as grids 
using the method introduced in [9].  

The dimension of the grid-structure can be arbitrary and 
therefore called hypercubes. The grids of the hypercubes are 
represented by two extreme coordinates. For example, ((1, 5, 
2), (8, 9, 11)) represents 3D grids ranging from 1 to 8 for the 
first axis, from 5 to 9 for the second axis, and from 2 to 11 for 
the third axis.  

Each coordinate in a hypercube corresponds to a random 
variable. The 3D grids above, for example, consists of 8 * 5 * 
10 = 400 random variables. The random variables are linearly 
indexed. For example, the index (0, 1, …, 26) of (3, 3, 3) 
hypercube can be indexed as Figure 4. Sum nodes and leaves 
in PCs correspond to sub-hypercubes, and their linear indices 
are scope for the nodes.  

For pure PC models, learning algorithms that are based on 
K-means or EM algorithms, can directly be applied to the grid-
structured intermediate data by splitting and clustering the 
grids.  

V. EVALUATION STRATEGY 
We built a front-end system with REST API to facilitate 

easy integration and evaluation (Fig. 5) [16]. Currently only 
the pure PC model based on RSPN [11] is prototyped but the 
architecture facilitates easy extension of other models. The 

datasets for evaluation can be NYC taxi, Uber movements, 
and Foursquare [9][10][11]. 

VI. CONCLUSION AND FUTURE WORKS 
This paper suggests a methodology and framework for 

learned spatio-temporal approximate query processing. By 
introducing a common encoding/embedding layer with a PC-
based front-end model, it can embrace state-of-the-art models 
with efficient and effective AQP with error bounds. Future 
works include prototyping hybrid models such as 
‘PC+Transformer’ and performance comparison with 
different combinations of models and traditional spatio-
temporal data store systems. 
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