

A Framework for Learned Approximate Query
Processing for Tabular Data with Trajectory

Kihyuk Nam, Sung-Soo Kim, Choon Seo Park, Taek Yong Nam, Taewhi Lee
ETRI

Daejeon, Korea
{nam, sungsoo, parkcs, tynam, taewhi}@etri.re.kr

Abstract— Approximate query processing has been well established
for enhancing performance of aggregation queries on ever-increasing
big data by statistically equivalent approximations. Recent popularity
of mobile devices creates tremendous spatio-temporal data that
require different treatment than relational ones. Among spatio-
temporal data, we focus on trajectories in a tabular form and analyzes
the problem, its requirements, and suggest a general-purpose
framework for learned approximate query processing by providing a
common encoding/embedding layer for embracing diverse state-of-
the-art ML models, on top of which resides a probabilistic circuit for
efficiency and efficacy with error bounds.

Keywords—Spatio-temporal Approximate Query Processing,
AQP, Machine Learning

I. INTRODUCTION
Ever-growing amounts of spatio-temporal data are

ceaselessly generated by a variety of devices from IoT sensors
to hand-held mobile devices and autonomous driving cars.
Those data have different characteristics from traditional
tabular or relational data since the dependency along the time
axis forms their intrinsic meaning.

The approximate query processing (AQP) has become a
well-established component of big data analytics by fast
producing statistically equivalent results of exact matching
[1]. Furthermore, recent development of machine learning
(ML) and deep learning (DL) technologies opened new
opportunities in this direction. Although there has been
proposed a variety of spatio-temporal data analytics methods
that are based on traditional statistical techniques, ML/DL
techniques are rarely applied to them, presumably due to the
idiosyncratic nature of spatio-temporal data.

This paper analyzes the problem of approximating spatio-
temporal queries using ML & DL, and requirements for
applying state-of-the-art ML/DL models to AQPs, then
suggests a general solution with a work-in-progress prototype.
Among spatio-temporal data, we focus on the trajectories and
their core operators as a starting point. Finally, we present an
evaluation strategy and future plan.

II. RELATED WORKS
Li et. al., tackle almost the same problem except they use

sampling on spatio-temporal index for approximation [2].
DeepSPACE is a deep learning-based approximate geospatial
query processing engine that can answer flexible aggregation
queries while keeping the required state to a small data size
[3]. NeuroSketch handles range aggregate queries (RAQs) by
leveraging neural networks [4]. It focuses on modeling queries
rather than data in a geospatial database environment. Vu et.
al, suggests a spatio-temporal pattern mining technique for
LBS [5], and Kim et. al, presents 3D spatio-temporal models
[6]. To the best of our knowledge, there are no learned spatio-
temporal AQP for queries on relational data with trajectory,
which guarantees efficiency, efficacy, and error bounds.

Fig. 1. Basic target space and its example

III. PROBLEM ANALYSIS
Among a variety of spatio-temporal problems, this paper

deals with an AQP for aggregate trajectory range query.

A. Definitions
Problem: Given a region and/or a time condition in a

target space, find an aggregation (e.g., count, sum, average) of
rows satisfying both spatio-temporal and non-spatio-temporal
conditions.

Spatio-temporal data are assumed to be a (m+n+1)-
dimensional relational model, ((S1, … , Sm, T), C1, … , Cn) with
(m+1) dimension spatio-temporal column (Fig 1, left).

A trajectory is a time-stamped sequence of spatial
coordinates from a moving object. It can be seen as a curve or
region in a hypercube. The spatial coordinates can be GPS
data or check-in points from vehicles or smartphones.

The dimension of target spaces would be arbitrary. It can
be a 3D space consisting of latitude, longitude, and time
dimension (Fig 1, right). It could be a 4D space with latitude,
longitude, altitude, and time dimension. Each dimension can
be discrete, continuous, and categorical.

Querying on k-dimensional relations with spatio-temporal
columns can be seen as searching in k-dimension space, or
distinct value estimation problem [2].

B. Requirements and Limitations of DNNs
By using recent deep learning technologies, the following

methods can be considered for our learned model.

� Probabilistic: probabilistic circuits [8] (e.g., SPNs [9])

� Convolutional (e.g., CNNs): Trajectories can be seen
as 3D or 4D figures. Currently the spatial dimension
should be less than or equal to 3 since most
convolutional models are built for 2D or 3D inputs.

� Sequential (e.g., RNNs, Transformers): Trajectories
naturally fit into sequential models due to the time
dependency.

While recently developed deep neural networks (DNNs)
show great representational power, it’s difficult to provide
uncertainty scores for reliable decision making with efficient
learning and inference. Furthermore, they cannot provide
various combinations of conditionals, marginals for
processing typical select-project-join queries.

1122979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

1 Trajectories on 6/1, after 12:00, intersecting with the area (3,3)-(7,7)

kisql> select id, name, st_lifetime(st_intersection(position,
st_importfromwkt('MPOLYGON((2023/06/01 12:00:01,((3,3,7,3,7,7,3,7,3,3))))')))
from nam_phone_user1;
--
id name st_lifetime(…)
---- ------ --
2 [Kim] Period[2023-06-01 12:00:07.0000~2023-06-01 12:00:07.0000]
1 [Nam] Period[2023-06-01 12:00:03.0000~2023-06-01 12:00:05.0000]
--
select row count [2]
RESULT : 0.000419

2 Number of trajectories from 5/31, 12:00 to 6/1, 12:11, passing the area (3,3)-
(7,7)
kisql> select count(*) from nam_phone_user1 where st_passes(position,
st_importfromwkt('MPOLYGON((2023/05/31
12:00:03,((3,3,7,3,7,7,3,7,3,3))), (2023/06/01
12:10:59,((3,3,7,3,7,7,3,7,3,3))))'))=1;

count(*)

2

select row count [1]
RESULT : 0.000356

Fig. 2. A sample queries on 2 trajectories

TABLE I. QUERIES IN PROBABILITY EXPRESSION

1 Which street is the most likely to have traffic jam at 7pm?
argmaxStreet P(Jam(Street) | 7pm)

2 When is the most likely to have traffic jam in Streetk?
argmaxTime P(Time | Jam(Streetk) = 1)

3 What’s the probability of having traffic jam at Streetk on Monday?
P(Day=Monday, Jam(Streetk) = 1)

4 When is the most likely to have traffic jam along the trajectory of my commute?
argmax P(Time | �)

* Time, Streetk and Day are random variables, Jam(s) returns whether s has traffic jam.

TABLE II. OPERATORS

Type Operators

Set buffer, difference, intersection, union
Temporal precedes, equals, meets, overlaps, contains

Spatio-temporal equals, disjoints, touches, contains, within, crosses,
overlaps, intersect, relate

Trajectory enters, leaves, passes, meets, insides

TABLE III. SEMANTICS OF TEMPORAL OPERATORS

precedes(x, y) x=[a, b) precedes y=[c, d) � b <= c
equals(x, y) [a, b) equals [c, d) � (a=c) and (b=d)
meets(x, y) [a, b) meets [c, d) � b=c
overlaps(x, y) (t [a, b), t [c, d)) or (t [c, d), t [a, b))
contains(x, y) (a<c) and (b>d)

C. Queries in SQL
Trajectory queries can be given in SQL statements for

OGC-compliant, moving object database systems. Figure 2
shows some SQL statements for Kairos MO SQL [7]. This
paper analyzes only aggregates with AVG, SUM, COUNT.

D. Queries in Probability Expression
Most trajectory queries can be represented as probability

expressions. Table 1 shows some traffic examples, which
require calculating conditionals and marginals (and joint
probabilities from them) to answer those queries.

E. Predicates and Operators
Apart from comparison and logical operators such as <, =,

>, !, ‘and’, and ‘or’, spatio-temporal operators or predicates
should be supported. Major operators supported by OGC-
compliant systems can be summarized as in table 2. Their
semantics can be formally defined for being applied to ML

models. For example, the semantics of temporal operators can
be defined as table 3.

Fig. 3. PC-based Architecture

IV. SOLUTION
To provide a general methodology and a framework where

new models can be easily adopted, we need to introduce a
common intermediate layer on top of baseline architecture
[15][16], that generalizes input data, learning/inference
procedure and underlying subsystems.

A. Two-Staged Processing
As mentioned in Section 3-A, data are prepared in

relational models, ((S1, … , Sn, T), C1, … , Cn), so we need to
process relational data as well as spatio-temporal (trajectory)
data. The exact order depends on the result of query planning.

B. PC-based Architecture
We chose probabilistic circuits as a front-end model for

our learned AQP systems because of efficiency, efficacy, error
bounds and incremental updating [8]. It is proven that any
decomposable and smooth probabilistic circuit is valid
probability distribution, and its inference is tractable (linear in
the size of a PC). By using PCs as front-end, outer model,
uncertainty scores can be generated, which helps reliable
decision making. Furthermore, PC-based models can be
updated partially by modifying only the relevant leaves and
weights of sum nodes. In general, there can be three types of
PC-based solution (Fig. 3).

� PC + PC: Both Spatio-temporal and relational (non-
spatio-temporal) columns are modeled in PCs. Outer
PC models relations, and inner PC represents
trajectories. It’s efficient but may lack representation
power than DNN-based inner models.

� PC + Transformer: PC front-end with transformer-
based leaves and attention-based weights of sums. The
intermediate trajectories can also be added to
positional encodings.

� PC + Convolution: Trajectories can be seen as 3D or
4D figures, which naturally fits in convolution-based
models. Currently the spatial dimension should be less
than or equal to 3 since most convolutional models are
built for 2D or 3D inputs. The non-spatio-temporal
columns are represented in the outer PC model.

Other types of DNNs not specified above can be connected
into the outer PC as well. It is also possible to adopt all-in-
one PC models that synthesized with recent DNN concepts
(e.g., transformer, attention, convolution, etc.).

1123

[[[0 1 2] [3 4 5] [6 7 8]]
[[9 10 11] [12 13 14] [15 16 17]]
[[18 19 20] [21 22 23] [24 25 26]]]

Fig. 4. An example of linear indexing of (3D) hypercube

Fig. 5. REST API + Pure PC model

C. Common Layer – Encoding and Embedding
To make our solution as general as possible, we define a

common layer that takes charge of encoding and embedding
so that the downstream subsystems can be independent of our
framework. We assume that all of the input data are pre-
processed into ‘one row, one trajectory’ format. Many of open
data such as Uber movements [10] are segment-based, i.e., one
row is one segment, so that one trajectory can be spread over
several rows. Those data are assumed to be aligned to 1:1
format before entering our learned AQP model.

Users can define the level of detail for each axis. For
example, GPS data consists of latitude and longitude with
ranges [-90, 90] and [-180, 180] respectively. They can be
discretized by truncating below the decimal points or binning.
Time values can also be discretized or categorized as well
(e.g., [0, …, 23] hours, morning/afternoon, or Sunday-
Saturday). Such a user-defined LoD value must be given to
the system configuration.

Right after the common layer comes a PC-based front-end,
outer model that summarizes entire calculations including
query answers and their uncertainty scores.

For the PC front-end and DNN-based inner models to be
more efficient and effective for learning and inference tasks,
the spatio-temporal part of ((Si, T), Cj) is structured as grids
using the method introduced in [9].

The dimension of the grid-structure can be arbitrary and
therefore called hypercubes. The grids of the hypercubes are
represented by two extreme coordinates. For example, ((1, 5,
2), (8, 9, 11)) represents 3D grids ranging from 1 to 8 for the
first axis, from 5 to 9 for the second axis, and from 2 to 11 for
the third axis.

Each coordinate in a hypercube corresponds to a random
variable. The 3D grids above, for example, consists of 8 * 5 *
10 = 400 random variables. The random variables are linearly
indexed. For example, the index (0, 1, …, 26) of (3, 3, 3)
hypercube can be indexed as Figure 4. Sum nodes and leaves
in PCs correspond to sub-hypercubes, and their linear indices
are scope for the nodes.

For pure PC models, learning algorithms that are based on
K-means or EM algorithms, can directly be applied to the grid-
structured intermediate data by splitting and clustering the
grids.

V. EVALUATION STRATEGY
We built a front-end system with REST API to facilitate

easy integration and evaluation (Fig. 5) [16]. Currently only
the pure PC model based on RSPN [11] is prototyped but the
architecture facilitates easy extension of other models. The

datasets for evaluation can be NYC taxi, Uber movements,
and Foursquare [9][10][11].

VI. CONCLUSION AND FUTURE WORKS
This paper suggests a methodology and framework for

learned spatio-temporal approximate query processing. By
introducing a common encoding/embedding layer with a PC-
based front-end model, it can embrace state-of-the-art models
with efficient and effective AQP with error bounds. Future
works include prototyping hybrid models such as
‘PC+Transformer’ and performance comparison with
different combinations of models and traditional spatio-
temporal data store systems.

ACKNOWLEDGMENT
This work was supported by Institute of Information & communications

Technology Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (No.2021-0-00231, Development of Approximate
DBMS Query Technology to Facilitate Fast Query Processing for Exploratory
Data Analysis)

REFERENCES
[1] Li, K., Li, G. Approximate Query Processing: What is New and Where

to Go?. Data Sci. Eng. 3, 379–397 (2018).
[2] Y. Li, CY. Chow, K. Deng, M. Yuan, J. Zeng, JD. Zhang, Q. Yang,

and JL. Zhang. 2015. Sampling Big Trajectory Data. In Proceedings of
the 24th ACM International on Conference on Information and
Knowledge Management. Association for Computing Machinery, New
York, NY, USA, 941–950. https://doi.org/10.1145/2806416.2806422

[3] D. Vorona, A. Kipf, T. Neumann, and A. Kemper, “DeepSPACE:
Approximate Geospatial Query Processing with Deep Learning,” in
Proceedings of the 27th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPATIAL 2019,
Chicago, IL, USA, November 5-8, 2019. ACM, 2019, pp. 500–503.

[4] S. Zeighami, C. Shahabi, and V. Sharan, “NeuroSketch: Fast and
Approximate Evaluation of Range Aggregate Queries with Neural
Networks,” Proc. ACM Manag. Data, vol. 1, no. 1, pp. 100:1–100:26,
2023. [Online]. Available: https://doi.org/10.1145/3588954

[5] Vu, T.H.N., Lee, J.W. and Ryu, K.H. (2008), Spatiotemporal Pattern
Mining Technique for Location-Based Service System. ETRI Journal,
30: 421-431. https://doi.org/10.4218/etrij.08.0107.0238.

[6] Kim, H.-G., Shin, S.-S., Kim, S.-W. and Lee, G.Y. (2021), No-
reference quality assessment of dynamic sports videos based on a
spatiotemporal motion model. ETRI Journal, 43: 538-
548. https://doi.org/10.4218/etrij.2020-0160.

[7] http://www.realtimetech.co.kr/bbs/page.php?hid=p202_3
[8] A Vergari, YJ Choi, R Peharz, G Van den Broeck. “Probabilistic

circuits: Representations, inference, learning and applications”,
Tutorial at the The 34th AAAI, 2020

[9] H. Poon and P. Domingos, “Sum-product networks: a new deep
architecture,” in Proceedings of the 12th Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 337–346, 2011.

[10] https://github.com/cambridge-mlg/EinsumNetworks.
[11] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C.

Binnig. 2020. DeepDB: learn from data, not from queries! Proc. VLDB
Endow. 13, 7 (March 2020), 992–1005

[12] https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
[13] https://movement.uber.com/
[14] https://location.foursquare.com/developer/
[15] T. Lee, K. Nam, C. S. Park, and S. Kim, “Exploiting Machine Learning

Models for Approximate Query Processing,” in IEEE International
Conference on Big Data, Big Data 2022, Osaka, Japan, December 17-
20, 2022. IEEE, 2022, pp. 6752–6754.

[16] K. Nam, S. -S. Kim, C. S. Park, T. Y. Nam and T. Lee, "Designing ML-
based Approximate Query Processing Services on Time-Varying Large
Dataset for Distributed Systems," 2022 13th International Conference
on Information and Communication Technology Convergence (ICTC),
Jeju Island, Korea, Republic of, 2022, pp. 1979-1982, doi:
10.1109/ICTC55196.2022.9952398.

1124

