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Abstract—Recently, machine learning approaches have been
widely applied in the mobile communication field. This paper
presents a novel deep learning (DL) model for Channel State In-
formation (CSI) feedback compression using wavelet transform.
Specifically, the proposed model incorporates wavelet transform
into the DL model. And, the model is trained with a combined
loss function to effectively preserve high-frequency components.
Based on extensive simulations using New Radio (NR) channel
model, the CSI reconstruction performance of the proposed
model is improved compared to an existing DL-based method
for CSI feedback compression.

Index Terms—CSI feedback Compression, Deep Learning,
Wavelet Transform

I. INTRODUCTION

In current communication systems, massive multiple-
input multiple-output (MIMO) is essential to provide higher
throughput to serving users [1]. To guarantee performance
of multiple users in Downlink, it is important to obtain pre-
cise channel information. However, obtaining precise wireless
channel information requires more overhead transmitted from
the User Equipment (UE) to the base station (BS). Therefore,
the trade-off between overhead reduction and precision of
channel feedback could be an interesting research topic.

With the development of machine learning (ML) methods,
various research efforts in academia and industry are actively
conducted to apply ML to mobile communication systems.
For example, 3rd Generation Partnership Project (3GPP),
an international standardization organization, is conducting
a study on applying ML technology to the air interface of
5G New Radio (NR) systems [2]. In this study item, CSI
feedback compression is discussed as a representative use case
to increase efficiency using ML technology.

In the direction of applying ML to CSI feedback com-
pression, an Autoencoder, one of the deep learning (DL)
structure, is commonly investigated to obtain a compressed
latent space for MIMO channel. It was shown that CSI feed-
back can be effectively compressed by treating the wireless
channel as an image and training it with Convolutional Neural
Network (CNN) based autoencoder [3]. Compression using
eigenvectors extracted from the wireless channel, rather than
the full channel matrix itself, is superior to the existing
3GPP codebook-based method [4]. However, existing research
has not considered a more diverse and complicated channel
environment. In this paper, we performed diverse simulations
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using the 3GPP NR channel model. The neural network struc-
ture for CSI feedback compression should consider various
channel environment during the training period to improve
performance. Therefore, we aimed to present a novel deep
learning structure that can be utilized in real-world wireless
system.

Wavelet transform is a method of decomposing an arbitrary
signal using functions known as wavelets. Wavelet transform
is suitable for representing signals and images using only
a small number of coefficients, and it is commonly used
to reduce noise or compress images especially in the field
of image processing. In [5], wavelet based autoencoder was
applied to image compression in order to preserve various
frequency domains of images. For the method of performing
wavelet transformation, a lifting scheme, a second-generation
wavelet generation method, is proposed in [6]. CNN using
the lifting scheme shows comparable performance in image
reconstruction [7].

In the general case of an autoencoder structure for CSI
feedback compression, if the dimension of the latent space
is not large enough, components corresponding to high fre-
quencies may not be preserved during compression. Therefore,
reconstruction performance can be degraded. Moreover, in the
case of CNN-based neural networks which are widely used in
the CSI feedback compression, this structure was developed
in a situation where continuity with surrounding data was
secured to some extent such as pictures. On the other hand,
channel information such as eigenvectors has relatively low
continuity with surrounding data. Therefore, there is a need to
resolve this difference. To overcome this situation, we propose
a deep autoencoder model for CSI feedback compression using
wavelet transform in this paper. With the use of wavelet
transform, an original channel image can be decomposed into
multiple channel images of different frequencies.

The remainder of this paper is organized as follows, In Sec-
tion II, we describe the system model in which CSI feedback
is performed. Section III explains the wavelet transform and
the proposed autoencoder structure using wavelet transform.
In Section IV, the simulation results are presented and the
excellence of the proposed method is investigated. Finally, we
conclude this paper in Section V.

ICTC 2023



Criginal channel H

| UE

i [ Calculating Eigenvector ] .

lOriginaI eigenvector W

' [ Encoder ]

eeeorerno | Compressedbite

' BS v :
[ Decoder ]

Reconstruted eigenvector W'

Fig. 1. Autoencoder architecture for CSI feedback compression.

II. SYSTEM MODEL

In this paper, we consider a typical massive MIMO trans-
mission system. The BS which has N, transmission antenna
ports transmits data to the UE with N,., receiver antenna ports.
It is assumed that the UE measures CSI feedback using the
pilot signal transmitted by the BS. The frequency domain
of the measured channel consists of K subbands, with each
subband including 4 resource blocks (RB). The Downlink
channel of can be written as

H = [H17H27"’7HK]7 (l)

where H), € CNw=*Nra 1 < k < K indicates Downlink
channel of the Kth subband.

In this study, it is assumed that the eigenvector calculated
from downlink channel H is compressed and transmitted.
This is because, feedback of eigenvector can reduce overhead
compared to feedback of the full channel matrix. Moreover,
we consider actual CSI information transmitted from the UE
to the BS in 5G NR standard. The eigenvector is calculated by
using Singular Vector Decomposition (SVD) which is widely
used in MIMO system.

And, the eigenvector of the DL channel in K subbands can
be written as

W:[WlaW27"‘7WK]7 (2)

where W € CNe=*K and w;, with normalization ||w,%” =1.

In this paper, NR channel models defined in 3GPP for
system-level simulations are utilized. Specifically, Urban Mi-
cro (UMi) represents typical outdoor scenarios. More details
about these NR channel models can be founded in 3GPP
specification 38.901 [8].

In CSI feedback compression, the basic configuration of
autoencoder is displayed in Fig. 1. The UE compresses the
measured eigenvector using an encoder.

Cc = fenc(W) (3)

LL LH
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Fig. 2. Two-dimensional wavelet transform.

The compressed bits ¢ are transmitted to the BS through the
air interface. Then, the BS decompresses received bits using
a decoder and reconstructs the eigenvector.

W = fdec(c) (4)
III. PROPOSED METHOD

A. Wavelet transform

With wavelet transform, the original image is divided into
different images in multiple frequency bands. Fig. 2 shows an
example of an image transformed by two-dimensional wavelet
transform. The entire image on the left side is decomposed into
four regions which has the same total overall size. And, each
region has the half height and width of original images. On
the right side, L means low-frequency band information and
H means high-frequency band information. Therefore, the LL
part includes low-frequency band information in both the hor-
izontal and vertical directions. Conversely, images of different
frequency bands (LL, HL, LH, HH) can be combined with
the original image using inverse wavelet transform.

The lifting scheme, the second generation of making
wavelet transform, consists of three steps: split, prediction
and update. In the split step, the input signal is divided into
two separate signals, which are generally separated into odd
and even parts, x. and z,. In prediction process, coefficients
in a high-frequency region, x4, are calculated by taking the
difference between odd part and the result obtained from the
even part after filtering.

g =z, — P(x.), %)

where P(-) represents prediction filter. Then, in the update
process, the even part and the filtering result from the odd part
are added to obtain coefficients in the low-frequency region.

Te = Te + U(wd)v (6)
where U(-) indicates update filter.

B. Proposed DL model

Wavelet transform described above is incorporated into the
DL model for CSI feedback compression. As shown in Fig. 3,
the architecture of proposed DL model is detailly explained. In
this structure, wavelet transform and inverse wavelet transform
are included in the first part of the encoder and the last part
of the decoder.

Input joint eigenvector W is consists of K eigenvectors
from each subband. And, each eigenvector composed of real
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Fig. 4. Lifting scheme with neural networks.

and imaginary parts. Thus, input dimension is 2 X K X Ny,.
In the encoder, wavelet transform is performed on the input
eigenvector, and the results are converted to compressed bits.
More specifically, the input eigenvector is partitioned into
four smaller images by wavelet transform, and the dimension
of each image is 2 x K/2 x Ny, /2. Afterward, each image
passes through 2D convolutional layer with 2 filters and 3x3
kernel size, and they are merged into one image with 8 feature
channels. In the above process, the leaky Rectified linear
unit (ReLU) activation function is used. Next, the image is
converted into compressed bits through a fully connected (FC)
layer.

In the decoder, eigenvector reconstruction from compressed
bits is performed using a more complicated structure compared
to the encoder. First, the FC layer is used to change com-
pressed bits back to the original dimension. The output of FC
layer is then reshaped into K /2 x N, /2 image with 8 feature
channels. After that, 2D convolution layers are successively
utilized to capture deep features. In this part, we modify
RefineNet structure proposed in CsiNet [3], and the well-
known shortcuts structure is also used. After repeated use of
RefineNet, inverse wavelet transform is adopted to convert the
image of 8 feature channels into an image of the original size
with two feature channels.

Instead of using existing wavelets, wavelet transform that is
trained on the currently used input can be included in the deep
learning model. In the lifting scheme, parts corresponding to
prediction and update are replaced to the neural network as
shown in Fig. 4. The predict and update neural networks learn
wavelet transform and inverse wavelet transform suitable for

the current input during the training period. These networks
consist of multiple 2D convolution layers with 3x3 kernel
size.

C. Loss function

For the training of the proposed DL model, we utilize a
combined loss function that incorporates both the MSE loss
of original image and the transformed image. The first MSE
loss of original eigenvector indicates the difference between
the joint eigenvector and the restored eigenvector from the
decoder.

1
LMSE1(Wa W/) = ”WH ZHW_W/HQv (7)

where ||-|| represents Euclidian norm.

O from the second MSE loss represent high-frequency
components after wavelets transform such as LH, LH, and
HH. By using the loss function of high-frequency parts, the
model can preserve more high-frequency information.

1
Lysr,(0,0) = el dole-e’ (8)
The combined loss function is written as
L=a1Lyse,(W,W') 4+ azLyse,(0,0), 9)
where a7 and s represents the weights of the loss function.

IV. SIMULATION RESULTS
A. Simulation environment

In order to train the proposed DL model and evaluate its
performance, channel dataset is created using NR channel
model. In NR Urban Micro (UMi) environment, 19 BSs are
located in 3 tiers, and 30 UEs are uniformly generated in each
BS. In one drop, samples of channel data for 570 UEs are
created. After multiple drops, these samples were used for
training and testing. During training period, 200 epochs are
conducted using the Adam optimizer with an adaptive learning
rate, starting from le ™2 and ending at 1le~*. Additionally, the
batch size set to 128. The detailed simulation parameters are
summarized in Table I.

We compared the proposed DL model with CsiNet [3], one
of the existing DL methods for CSI feedback compression.
For a fair comparison, we modified CsiNet to have the same

TABLE I
SIMULATION PARAMETERS
Parameters [ Value
Carrier frequency 4GHz
Bandwidth 10MHz
Subcarrier spacing 15KHz
Subband number 12
Tx Antenna port 32
Rx Antenna port 4
Channel model NR UMi
Number of train samples 27,000
Number of test samples 3,000
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Fig. 5. Performance comparison of the proposed and conventional methods
for SGCS.

structure as our proposed model except for wavelet transform.
Two performance metrics are used to measure the performance
of the reconstructed eigenvector. The first one is normalized
MSE (NMSE), which quantifies the difference between the
restored and the original eigenvector. Additionally, Squared
Generalized Cosine Similarity (SGCS) is used to compare the
direction of the eigenvector. And, SGCS can be written as

ot

XTIZATRTIAT (10)
[ [ 1w

SGCS has a value between 0 and 1, where a value of 1
indicates a perfect match with the original direction.

B. Channel reconstruction performance

As shown in Fig. 5, a performance comparison is presented
between the proposed model using wavelet transform and the
conventional DL method for SGCS. This comparison was
conducted by varying the size of compressed bits. As the size
of compressed bits decreases, the compression rate increases
compared to the dimension of the original eigenvector. How-
ever, the overall performance is reduced due to the loss of
more information during compression.

According to the SGCS results, the UMi scenario exhibits an
approximate 3.4% performance improvement compared to the
conventional method. In contrast, the indoor scenario shows a
relatively modest performance improvement of 0.5%. This is
because of the characteristics of channel model in the indoor
scenario, which is relatively easier to train and where Non
Line-of-Sight (NLOS) conditions frequently occur. On the
other hand, in the UMi environment, Line-of-Sight (LOS)
conditions also occurs. This setting results in eigenvectors
having a sharper appearance and containing high-frequency
components. By utilizing the proposed model with wavelet
transform, these high-frequency components are better pre-
served, consequently leading to enhanced performance.

NMSE results in Fig. 6 demonstrate the same trend as
the as SGCS results. It is evident that the performance gain
is at least -0.52dB in the UMi scenario. Conversely, in the
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Fig. 6. Performance comparison of the proposed and conventional methods
for NMSE.

indoor environment, the performance gain decreases to below
-0.05dB.

V. CONCLUSION

In this paper, we have proposed the DL model for CSI
feedback compression using wavelet transform. Specifically,
we utilized wavelet transform and the modified loss function
to preserve high-frequency components. And, the simulation
results with NR channel model demonstrate that the proposed
model can improve CSI reconstruction performance compared
to the existing DL-based method. Therefore, this method offers
overhead reduction and performance improvement in MIMO
environment.
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