
Space and Cost-Efficient Reed-Solomon Code based
Distributed Storage Mechanism for IPFS*

Heekyung Shin∗†, Myungcheol Lee∗, Seongmin Kim†

Electronics and Telecommunications Research Institute(ETRI), Daejeon, Korea∗,
Sungshin Women’s University, Seoul, Korea†,

Email: ∗{mclee}@etri.re.kr, †{220224009, sm.kim}@sungshin.ac.kr

Abstract—The peer-to-peer (P2P) based distributed file sys-
tem known as IPFS (InterPlanetary File System) has recently
garnered significant attention as a decentralized storage solution
in the Web3 landscape. However, IPFS operates on a voluntary
participation basis, which can limit data availability. To enhance
automated data availability on IPFS, an extended solution known
as IPFS Cluster is being developed. This solution leverages a
data replication approach. This paper proposes a Reed-Solomon
based distributed content storage mechanism for IPFS, enhancing
data availability and significantly improving storage efficiency
compared to traditional replication methods. This technology
is anticipated to serve as a fundamental building block for
efficiently storing, managing, and utilizing large-scale, high-
capacity digital content in various Web3 environments.

Index Terms—Decentralized Storage, Web3, P2P, IPFS, Reed-
Solomon Erasure Code

I. INTRODUCTION

The emergence of large-scale data platforms supporting the
easy creation, management, and distribution of content in the
Web 2.0 era led to accelerated data generation as users directly
participated in content creation. It leads to a rapid increase in
the generation of massive and unstructured data [1] coupled
with next-generation information and communication tech-
nologies (ICTs), such as artificial intelligence and the Internet
of Things (IoT). Typically, centralized enterprise systems, such
as cloud storage [2], would have been a rational choice to
store and manage the data in practice. However, this introduces
potential risks raised by the delegation and ownership transfer,
as the companies control and monopolize user data [3]. Such
concerns prompted the need for a Web3 environment to ensure
user data privacy and ownership [4].

To address the challenge of managing large amounts of
generated data while ensuring privacy, utilizing decentralized
storage in the Web3 context to place the ownership on the
client side has become essential. A leading technology in
shaping Web3’s file storage system is the InterPlanetary File
System (IPFS) [5], a peer-to-peer-based distributed file storage
system. IPFS provides a distributed data store that ensures
data integrity while allowing efficient access [6] by utilizing
Merkle Directed Acyclic Graph (DAG) for content integrity
and Distributed Hash Table (DHT) for content discovery.
IPFS also addresses a single point of failure as it operates
in a decentralized manner, unlike traditional HTTP protocols
reliant on central servers.

* Corresponding author: Myungcheol Lee. Heekyung Shin conducted this
research as a student researcher at ETRI.

However, IPFS suffers from data availability because it
relies on voluntary participation by design. Due to the de-
centralized nature of IPFS, nodes in the IPFS network have
limited storage space, so there is no obligation to store data
permanently. Such a design could result in accessibility prob-
lems if nodes with specific data fail or intentionally disconnect
from the network. Moreover, malicious users could erase data
from all nodes leading to permanent data loss, since anyone
with the content’s identifier (CID) can delete data [7]. There-
fore, IPFS requires complementary technologies to ensure
data persistence [8]. In response, Filecoin [9] emerged as an
incentive layer for IPFS, ensuring data permanence by reward-
ing Blockchain-based cryptocurrency. Users pay for utilizing
Filecoin storage, and storage providers receive rewards for
securely storing users’ data during requested periods. But still,
institutions dealing with critical and privacy-sensitive data,
such as corporations and public organizations, worry about
the data openness and hesitate to adopt it as Filecoin operates
on the public IPFS network.

A recently proposed IPFS Cluster [10], serving as a cluster-
ing tool for IPFS, has garnered attention as an alternative for
cryptocurrency-based schemes. Rather than relying on a public
network that reveals data information, it guarantees data avail-
ability and reliability by leveraging replication and pinning
mechanisms within the private IPFS network to coordinate
data in a privacy-preserving manner. Nevertheless, the replica-
based approach that duplicates the entire original data might
lead to poor storage efficiency. In fact, NFT.storage, the largest
IPFS Cluster node in operation, suffers from the inflated
storage space. Because each pin is replicated three times by
default, employing a replication mechanism results in a total
storage consumption of 855 TiB, where NFT.storage utilizes
285 TiB and fixes 80 million pins in 2022 [10]. However,
existing research on IPFS Cluster has predominantly focused
on enhancing data availability, neglecting studies addressing
storage efficiency [11].

To this end, this paper explores the practical implications of
leveraging Reed-Solomon erasure code with IPFS Cluster to
improve storage efficiency. We propose a novel IPFS Cluster
architecture by extending the chunk and shard components
of IPFS to use Reed-Solomon encoding and build a storage
interface between IPFS daemon and Cluster to cope with
file management, including store API and retrieve API. To
systemically integrate into IPFS and IPFS Cluster, we develop
the encoding and decoding methodology compatible with the

1165979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

existing pinning mechanism and DAG service. Our simulation
result shows that storage overhead reduction of up to 6x
compared to existing IPFS Cluster architectures.

II. BACKGROUND

A. IPFS

IPFS, proposed by Protocol Labs, is a decentralized file
system that operates on a peer-to-peer (P2P) network rather
than relying on centralized servers to store and distribute
files [6]. IPFS utilizes a distributed hash table, allowing all
participating nodes within the network to perform the task
of mapping files to their corresponding node addresses. As a
result, this approach enables efficient file retrieval and storage.
Consequently, IPFS exhibits the capability to conduct content
searches within O(logN), even without knowledge of the
precise file location [12].

When adding files to IPFS, it efficiently divides them into
suitable-sized chunks and stores them in the file system.
Each chunk is assigned a CID based on the content, which
is used to identify the file. Identical content results in the
same CID, preventing redundant storage of files and reducing
space wastage. These chunks are structured and stored using a
Merkle DAG. The DAG maintains the relationships and order
of consecutive chunks through links. The lowest leaf nodes of
the Merkle DAG store CIDs and each higher node up to the
root node consists of the hashed values of their child nodes.
Consequently, any alteration in a single node’s hash value has
to affect its parent node’s hash values. Thus, IPFS ensures data
integrity and verifies unintended modification to data.

B. Reed-Solomon Erasure Code

The Reed-Solomon erasure code is a method of original
data and its encoded parity to enable data recovery in the
case of corruption or loss [13]. Parity fragments are generated
and stored as linear combinations of original data fragments.
When data recovery is necessary, the damaged data fragments
are identified, and by combining the remaining data fragments
and parity fragments, the original data can be recovered.

The notation for the Reed-Solomon erasure code is typically
denoted as RS(k,m), where k represents the number of
original data fragments and m represents the number of
parity fragments, respectively. The encoding process of Reed-
Solomon codes involves a simple linear algebra operation [14].
The RS(k,m) encoding is achieved by multiplying k ∗ 1
data words with a matrix composed of Generator matrices
in Vandermonde form, and this multiplication is performed
against a parity codeword of dimensions m ∗ 1 [13], [14]:

Gk = m (1)

where G is the transpose of Generator Matrix. Note that
Reed-Solomon erasure codes can be effectively utilized as a
key technique to optimize storage systems to optimize stor-
age space efficiency while preventing data loss and enabling
recovery [15], [16].

III. APPROACH

A. Requirements for data availability in an IPFS Cluster
IPFS Cluster is a distributed application for IPFS nodes

that extends the functionalities of IPFS to enhance data
availability and management. The approach through which
IPFS Cluster provides data management functionalities for
IPFS is as follows [8]. IPFS Cluster takes on the role of
replicating and pinning the original data across multiple IPFS
nodes, effectively managing the data storage within IPFS
itself. Within the Cluster, information about the IPFS nodes
where data is stored is composed into a pinset. This pinset is
continuously monitored and tracked, allowing the Cluster to
maintain the data. The replication and pinning mechanism of
the IPFS Cluster ensures data availability and stability even in
the event of a failure or offline status of a single node in the
Cluster. If a node within the Cluster fails or is down, the data
can still be stored and accessed from other replicated nodes,
ensuring data availability and reliability.

IPFS Cluster ensures that users can access their stored
data from anywhere at any time by synchronizing the node
allocation information (pinset) for the data among Cluster
nodes through consensus algorithms. When nodes are added or
removed, the changes are shared with all nodes, maintaining
the consistency of data allocation information. This ensures
that the reliability of data storage and access within IPFS
Cluster, as a distributed file system, is upheld.

B. Reed-Solomon Code based IPFS Cluster
By utilizing IPFS Cluster to replicate and store data across

multiple IPFS nodes, the likelihood of ensuring data avail-
ability increases. However, the efficiency of storage space
diminishes as the same data is duplicated across numerous
nodes. In essence, a trade-off between data availability and
storage space efficiency arises from a system perspective. In
this paper, we propose a solution to address this challenge by
applying the Reed-Solomon encoding technique to the IPFS
Cluster Chunk and Shard mechanisms.
Architecture overview. The architecture resulting from the
application of the proposed Reed-Solomon encoding technique
to IPFS and IPFS Cluster is composed of six main components
as depicted in Figure 1. The proposed mechanism extends the
state-of-the-art IPFS Cluster design, and the core functionali-
ties of each component are as follows.

• RSChunker: Chunking Reed-Solomon encoded shards
for the original data.

• RSDagBuilder: Building a ClusterDAG from the sharded
chunks, which are later pinned to allocated IPFS dae-
mons.

• RSAllocator: Be responsible for identifying and reserv-
ing IPFS nodes capable of storing the sharded chunks.

• RSTracker: Monitoring the health of IPFS nodes and
tracks whether there are sufficient Shard copies for re-
covery in case of node failures.

• RSDecoder: Gathering the shard and decoding the origi-
nal file, when a user requests to retrieve a file and a node
is in failure.

1166

Fig. 1: IPFS/IPFS Cluster internal flow using Reed-Solomon component (The red dotted box indicates modified or newly added
components from the original IPFS/IPFS Cluster. IPFS daemon and IPFS Cluster operate as a pair within a single host, and
Cluster nodes communicate with the IPFS daemon through the HTTP API.)

• CRDT Datastore: A Datastore for synchronizing pinset
information across multiple IPFS Cluster nodes.

We note that RSChunker, RSTracker, and RSDecoder are
modified or newly added components from the existing IPFS
Cluster, while other components remain unchanged.
Extending IPFS Cluster to leverage Reed Solomon. To
utilize Reed-Solomon erasure code, we modify the chunking
process of the IPFS Cluster and add a decoding module. First,
the proposed architecture extends the chunker module with
the shard mode of the IPFS Cluster to incorporate the Reed-
Solomon encoding technique, which we call RSChunker. In
the original IPFS Cluster, the Chunker function divides a file
into smaller segments when it is added to IPFS. Each segment
is hashed, and a CID is generated for each chunk. Additionally,
to accommodate large files, a Shard mode allows the original
file to be split and stored. The Larger shards can be further
divided into smaller chunks for better filesystem efficiency,
with each chunk stored as multiple blocks in UnixFS format.
The RSChunker chunks the data into k RSShards and m
RSParityShards, as opposed to the chunking mechanism of the
original IPFS Cluster, which divided shards and m replicas for
those shards. In summary, the differences lie in two aspects:
1) how the chunks are divided and 2) how the architecture
provides data availability.

Then, IPFS Cluster generates ClusterDAG based on the
divided shard. To illustrate the distinctions between the orig-
inal IPFS Cluster and the proposed architecture, we depict a
ClusterDAG drawn with RSDagBuilder (Figure 2) and that

of the original IPFS Cluster created with the DAG service
(Figure 3). In both figures, there are common elements: both
ClusterDAGs feature a MetaNode and a ClusterDAG Root
Node. The MetaNode contains the root CID of the ClusterDAG
along with metadata about its child nodes, and it is stored
across all IPFS Cluster nodes. The ClusterDAG Root Node
holds information about all shards connecting them. All IPFS
nodes that have a divided Shard also store the Root Node.
In our proposed architecture, there is a notable distinction
due to the inclusion of encoded RSShards. The RSMetaNode
now includes metadata pertaining to the Reed-Solomon en-
coding. When users request data retrieval, the RSShards can
be recovered and decrypted using the Root Node information,
facilitating the retrieval of the original data. At the end of the
chunking process, the way of distributing the shards to IPFS
daemons is also different. In the original IPFS Cluster, shards
are distributed across multiple IPFS daemon, as depicted in
Figure 3. In contrast, the proposed architecture stores the
original and parity shards individually on an IPFS node, as
shown in Figure 2. For this, we design RSTracker by extending
the existing pin tracker of the IPFS cluster. As previously
mentioned, RSShards differ in how they are stored individually
on an IPFS node. As a result, RSTracker’s responsibility is to
monitor the status of shards stored on these IPFS nodes. In
contrast, in the original IPFS Cluster, a tracker should maintain
awareness of the status of all shards and replicas distributed
across IPFS Daemons. This extensive oversight is necessary
due to concerns about the potential failure of any single piece

1167

of data.

Fig. 2: An example ClusterDAG from RS(4, 2) encoding

Fig. 3: An example ClusterDAG from original 3 replica
method

Finally, RSDecoder is newly added compared to the original
IPFS Cluster architecture. In the conventional setup, the shards
are basically not encoded, eliminating the need for decryption.
Within the proposed architecture, the presence of encoded
RSShards introduces a decryption requirement.
Architecture workflow. Figure 1 illustrates how these com-
ponents work together to create an efficient system that inte-
grates Reed-Solomon encoding into IPFS and IPFS Cluster.
When a user requests to store a file, an IPFS Cluster node
forwards the user’s data storage request to the RSChunker.
The RSChunker divides the original file into k shards and
generates m parity shards. Each divided shard is transformed
into an RSShard node through the RSDagBuilder, creating a
ClusterDAG as illustrated in Figure 2.

RSAllocator pins the divided shards to multiple known IPFS
nodes. It then constructs a Cluster pinset containing the CID

hash values of shards and information about the storing IPFS
nodes. This is stored in the CRDT datastore, shared among
all Cluster nodes to manage IPFS node allocation information.
Lastly, RSTracker periodically monitors and tracks the status
of IPFS nodes while data is stored. In the event of node failure,
RSDecoder recovers the entire data including the shard, which
was stored on the failed node, by collecting and decrypting the
shards from other nodes. Once the original data is successfully
recovered, the IPFS Cluster starts the entire process of re-
chunking and re-allocating shards, starting with RSChunker,
except for the failed IPFS node.

When a user requests to retrieve a stored file, a similar
process follows. The request is forwarded to the IPFS Cluster
nodes. The IPFS Cluster nodes identify the IPFS nodes’
information stored in the CRDT datastore. It then gathers the
shards from the IPFS daemon, goes through the decryption
process with RSDecoder, and delivers the original file to the
user.

IV. EVALUATION

To evaluate the storage efficiency of our architecture, we
conduct a preliminary simulation of storage usage for the
prototype Reed-Solomon code based IPFS Cluster and the
original one. We are considering a scenario where 22 nodes
within the IPFS network can be organized into shards, and
aim to assess the impact on space efficiency by varying the
combinations of shard numbers. It is worth noting that the
largest IPFS Cluster node in NFT.storage, which is the largest
IPFS Cluster network, currently consists of 24 nodes which
serve as a reference point for configuring the number of nodes
[10]. The number of shards k +m that can be created is 22,
which guarantees the same degree of availability for the m
parity shards and replicas created by each architecture. The
procedure for evaluating the storage overhead is as follows. In
the traditional IPFS Cluster replica-based approach, a single
shard is replicated. Consequently, if you create m replicas of
the original data of size 1, the storage overhead increases
by m + 1. On the other hand, in the proposed architecture,
the original data of size 1 is chunked into k shards, and an
additional m parity shards of the same size are generated.

As shown in the Figure 4, when m = 2, the replica
approach has an additional storage usage of 2 for 2 replicas,
so the storage overhead is 3. According to the proposed Reed-
Solomon approach, the original data is divided into 20 shards,
and 2 parity shards of size 1/20 are generated. The additional
storage usage of the original data is 0.1, so the overhead of
the storage is 1.1.

When flexibly adjusted the values of k and m, the storage
overhead of the Reed-Solomon approach increased more as
the value of k became smaller, but the rate of increase was
moderate. In particular, observing the largest impact in k =
14,m = 8, a storage overhead reduction of about 6x compared
to the replication approach.

In contrast to the replica-based availability approach, the
proposed encoding technique using combinations of data and
parity shards ensures data availability while reducing storage

1168

Fig. 4: Storage Overhead for Availability (Compared to Orig-
inal Data)

space. Furthermore, considering the importance of data within
the IPFS file storage system and user requirements for data
availability and storage usage, adjusting the k and m values of
shards flexibly allows optimization of storage space efficiency.
For enhanced resilience to data failure, we can configure it to
generate more parity fragments. Thus, the application of Reed-
Solomon encoding reduces space burden and offers a robust
architecture against data loss.

While various IPFS-based decentralized storage services
like Filebase and Pinata have been introduced, the replica-
based storage model often incurs substantial costs for users.
The proposal in this paper, through the utilization of Reed-
Solomon erasure codes within the IPFS Cluster, is expected to
maximize storage space efficiency in IPFS-based decentralized
storage, enabling users to access services at a lower cost.

V. CONCLUSION

IPFS, developed to ensure individual content ownership
beyond the traditional HTTP and Web 2.0 environments, is
widely utilized as decentralized storage for large-scale data
in numerous blockchain-related services. In this study, we
applied the Reed-Solomon erasure code within IPFS Cluster
to address the storage capacity issue and enhance data avail-
ability and stability when storing and accessing large-scale
data. Furthermore, the proposed space-efficient management
technique for large-scale data is expected to play a crucial
role in various interconnected metaverses in a Web3-based
multiverse environment. It would serve as a foundational
technology for storing, managing, and utilizing digital avatars
and content. Subsequent research will implement the Reed-
Solomon erasure code into the IPFS and IPFS Cluster archi-
tecture to validate the efficiency, stability, and storage/retrieval
performance of the proposed method.

ACKNOWLEDGMENT

This work was supported by Institute for Information&
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2021-0-
00136, Development of Big Blockchain Data Highly Scalable

Distributed Storage Technology for Increased Applications in
Various Industries).

REFERENCES

[1] D. Delen and H. Demirkan, “Data, information and analytics as ser-
vices,” pp. 359–363, 2013.

[2] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud storage as the
infrastructure of cloud computing,” in 2010 International Conference on
Intelligent Computing and Cognitive Informatics, 2010, pp. 380–383.

[3] P. Yang, N. Xiong, and J. Ren, “Data security and privacy protection
for cloud storage: A survey,” IEEE Access, vol. 8, pp. 131 723–131 740,
2020.

[4] J. Park and S. Choi, “Web 3.0 Reboot: Issues and Prospects,” Electronics
and Telecommunications Trends, vol. 37, no. 2, pp. 73–82, 2022.

[5] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[6] Protocol Labs, “IPFS powers the Distributed Web,” https://ipfs.tech/
[Online].

[7] H. Huang, J. Lin, B. Zheng, Z. Zheng, and J. Bian, “When blockchain
meets distributed file systems: An overview, challenges, and open
issues,” IEEE Access, vol. 8, pp. 50 574–50 586, 2020.

[8] Protocol Labs, “Persistence, permanence, and pinning,” https://docs.ipfs.
tech/concepts/persistence/ [Online].

[9] Y. Psaras and D. Dias, “The interplanetary file system and the filecoin
network,” in 2020 50th Annual IEEE-IFIP International Conference
on Dependable Systems and Networks-Supplemental Volume (DSN-S).
IEEE, 2020, pp. 80–80.

[10] S. J. Hector, “IPFS Cluster: scaling IPFS data storage,” https://blog.ipfs.
tech/2022-07-01-ipfs-cluster/ [Online].

[11] S. Muralidharan and H. Ko, “An interplanetary file system (ipfs) based
iot framework,” in 2019 IEEE International Conference on Consumer
Electronics (ICCE), 2019, pp. 1–2.

[12] Protocol Labs, “Distributed Hash Tables (DHTs),” https://docs.ipfs.tech/
concepts/dht/ [Online].

[13] J. S. Plank, “A tutorial on reed–solomon coding for fault-tolerance in
raid-like systems,” Software: Practice and Experience, vol. 27, no. 9,
pp. 995–1012, 1997.

[14] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, Z. Wilcox-O’Hearn et al., “A
performance evaluation and examination of open-source erasure coding
libraries for storage.” in Fast, vol. 9, 2009, pp. 253–265.

[15] B. Choi, C. Kim, and M. Lee, “Research trends on distributed storage
technology for blockchain transaction data,” Electronics and Telecom-
munications Trends, vol. 37, no. 3, pp. 85–96, 2022.

[16] S. Park, B. Choi, C. Kim, M. Lee, and I. Lee, “Erasure code-
based distributed storage system for storage-efficient hyperledger fabric
blockchain,” ISSN: 2383-8302, pp. 555–556, 2022.

1169

