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Abstract— As mobile communication system evolve 

from LTE to 5G, a wider range of services are being 

provided leading to a rapid increase of mobile data usage. 

The increase of traffic usage can be attributed to the 

commercialization of data-intensive content like video 

streaming, augmented/virtual reality (AR/VR), resulting in 

the installation of 5G base stations to accommodate the 

demand for these new services. Due to the increase in 5G 

base stations, there has been a growing interest in small cell 

planning. Among many methods for small cell planning, 

we focus on determining whether to target outdoor or 

indoor areas for base station deployment when additional 

installations are needed for efficient small cell planning. 

For this, we leveraged machine learning (ML) models to 

analyze base station data and categorized them into four 

main usage types, extracting patterns for each category. In 

this paper, we proposed a framework utilizing these 

extracted patterns to estimate indoor service ratio and  

provide criteria for indoor/outdoor small cell deployment. 

Furthermore, using the proposed framework in this paper, 

we estimated the indoor traffic ratio for office, shopping 

mall and Gangnam Station basestation data. Estimation 

results showed that the indoor traffic ratio for shopping 

mall data and office data was approximately 98% and 97%, 

respectively, approaching almost 100%.  And the estimated 

indoor traffic ratio for the entire Gangnam Station area is 

approximately 68%, which closely aligns with the results 

reported in other studies ranging from 70-80%. 
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I. INTRODUCTION 

As mobile communication system evolve from LTE to 5G, 

a wider range of services are being provided, leading to a 

rapid increase of mobile data usage. According to [1], 

global mobile data traffic reached 67 Exabytes per month 

in 2021 and is projected to reach 282 Exabytes per month 

by 2027. The increase of traffic usage can be attributed to 

the commercialization of data-intensive content like video 

streaming, augmented/virtual reality (AR/VR), resulting in 

the additional installation of 5G base stations to 

accommodate the demand for these new services. The 

authors in [1]  suggested that the growth in traffic until 

2027 will be influenced by the early adoption of extended 

reality (XR) services, including AR/VR, and mixed reality 

(MR). 

In this context, it is crucial to study the cell planning that 

are suitable for the 5G era [2]. Traditionally, the network 

operators deployed base stations to support the demand for 

peak-hour traffic. However, during the periods when base 

stations operate at low load or even when no individual 

users are actively using them, such as during nights and 

weekends, the base stations consume power equivalent to 

that of peak traffic hour [3]. To solve this problem, we can 

leverage small cells to efficiently distribute and handle the 

large amount of data. To optimize the efficiency with a 

given budget, it is necessary to deployment of small cells 

in the areas where they are needed most. Furthermore, 

small cells can be easily turned on and off, allowing them 

to be deactivated during non-peak hours to save power 

consumption. 

Research about small cell planning has evolved from 

addressing capacitiated facility location problems in 2G/3G 

cellular system to embracing the emergence of HetNets in 

the 4G cellular network. The 4G cellular network is quite 

different from the initial one where macro base stations 

were firstly deployed. This has steered researches toward 

small base station deployment suitable to the LTE mobile 

network. Meanwhile, many researches have focused on the 

small cell deployment [4]-[6]. Doru Calin et al. investigate 

insights on possible deployment architectures for 

femtocells along with an analysis framework for 

quantifying macro offloading benefits in realistic network 

deployment scenarios by means of advanced performance 

analysis techniques [4]. Shaowei Wang et al. proposed 

approximation algorithms  to minimum cell planning 

problem in heterogeneous networks. The planning task 

involves selecting a subset of possible base station (BS) 

sites to minimize the overall deployment cost [5]. They also 

tackled the budgeted cell planning problem in HetNets [6]. 

Subsequently, [7, 8] proposed methods to address small cell 

planning problem taking into acount the interference 

caused by small cell deployment. Additionally, based on 

research that suggested 70-80% of mobile data is generated 

indoor [9], studeis related to small cell deployment indoor 

have also been conducted. In [10], Guo et al. considered a 

single femto cell in a 1-dimentional indoor scenario and 

derived the worst cell-edge throughput. And Weisi Guo et 

al. understand the significance of indoor-generated traffic 

and propose optimal locations for deploying indoor access 

points (APs) at building [11]. However, to the author’s 
knowledge, there’s no research to provide criteria for 

determining whether to target the outdoor area or indoor 

area when additional base station installations are needed.  

Therefore, in this paper, to provide criteria that can be 

refered when installing additional base stations, we 

estimated the ratio of downlink traffic served to indoor 
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users and outdoor users by the deployed base stations. To 

estimate indoor traffic ratio, an analysis of the 

characteristics of traffic genereated indoor is necessary. 

According to the [12], indoor data traffic is analyzed to 

have unique characteristics. [12] propose Machine 

Learning(ML)-based method to analyze indoor data traffic. 

This paper aims to propose a framework that provides 

criteria necessary for small cell planning by leveraging the 

capability of ML model to classify indoor data traffic. To 

achieve this, we propose extracting base station usage 

specific patterns using ML and using these patterns to 

estimate indoor/outdoor traffic ratio of base stations. 

The remainder of this paper is organized as follows. In 

Section Ⅱ, we explain the dataset and propose framework 

of estimation of the indoor/outdoor traffic ratio. ML model 

used for pattern extraction also introduced in this section. 

In Section Ⅲ, Multiple classification results using various 

ML models and the optimal ML model-based estimation of 

the indoor/outdoor traffic ratio are presented. Conclusion is 

drawn in Section Ⅳ. 
 

II. DATASET AND SYSTEM MODEL 

 In this section, we explain dataset used in the study and 

present an overview of the proposed framework for 

estimating the indoor/outdoor ratio. The dataset used for 

this research is obtained from a South Korea mobile carrier 

and consists of downlink traffic data collected hourly from 

each base station, from September 17, 2022, 00:00 to 

October 16, 2022, 23:00. The term “collected hourly” 
means to the summation of downlink traffic volume during 

1 hour. This dataset is used for the pattern extraction, 

indoor/outdoor ratio estimation and validation of 

estimation result. The validation will be assessed by 

comparing the average estimated indoor/outdoor ratio 

value for the base station data from Gangnam Station with 

the ratio provided in [7]. And also by verifying whether the 

indoor ratio of the indoor base station data, which has been 

reliably labeled by the mobile carrier, approaches 1. 

 

A. Dataset 

    
       Fig 1. Gangnam              Fig 2. Coex            Fig 3. Office building 

  

In this paper, to classify mobile data traffic generated 

indoors, downlink data of mobile traffic from base stations 

located within a 1km radius of Gangnam Station, COEX 

and Office building located in Gwanghwamun (as shwon 

in Figure 1 to 3) are used. The total number of base stations 

is 139, including 87 within a 1km radius of Gangnam 

Station, 36 at COEX, and 16 in Office building. The dataset 

is labeled based on the area purposes where the base 

stations are located. Labeling is conducted using both 

Kakao Map’s area usage labeling or base station 
information provided by mobile carrier. For the Gangnam 

Station data, 25 were labeld as residential areas, 64 as 

commercial areas, 2 as other areas, and 5 as targeting roads. 

In 36 base station data at COEX, 30 are labeled as shopping 

mall areas, and 6 as office areas. And the office buidling 

data in Gwanghwamun, 16 out of the data are labeled as 

office areas. Among these, residential areas, shopping mall 

areas, and office areas are assumed to represent indoor data 

traffic, while data originating from roads are assumed to 

represent outdoor traffic. 

 

B. Framework of Estimation Indoor/Outdoor Ratio 

   
Fig 4. procedure of Estimation 

 

The framework for estimating the indoor/outdoor ratio of 

base stations is illustrated in Figure 4 and follows the 

process as described. Firstly, ML model is used to train 

labeled base station data categorized into residential, 

shopping mall, and office usage. Data categorized into 

outage usage is reliably labeled by the mobile carrier. So,  

without procedure of classification for pattern extraction, it 

is assuemd that the average of the data represents the outage 

pattern. Patterns for each category are extracted by 

averaging the highly accurately classified data from the 

trained supervised learning model with each category. 

These extracted patterns, normarlized between 0 and 1 as 

time series data, are then multiplied by weights α, β, γ and 
δ for residential, shopping mall, office, and outdoor, 

respectively. The optimized weight set of each base station 

data traffic is decided when MAE (Mean Absolute Error)  

between base station traffic data and estimated data that 

made by combining the weighted patterns is minimized. In 

the optimized weights, the weigths corresponding to indoor 

data α, β and γ are used to estimate the ratio of indoor-

generated data traffic relative to estimated data. The 

remaining weight δ is then used to estimate the ratio of 

outdoor generated data traffic. 

 

C. Process of Pattern Extraction 

 The process of extracting patterns based on the purpose of 

the base station is as follows. Firstly, since the current data 

proportion is not balanced, a data balancing process is 

necessary. Among the labeled data, the category with the 

smallest dataset is data for office usage that consists of 22 

labeled. Therefore, in order to balance the data proportions, 

22 data for each category of residential, commercial, and 

shopping mall usage categories need to be selected. The 

selection process is as follows: Initially, a  supervised 

learning model is trained using the train data, followed by 

classification of the test data. The ratio of target data is kept 

consistent between the train and test data. Classification is 

performed 100 times for each target category, and 22 data 

with the highest probabilities of being correctly classified 

based on the labeled information are selected for each 

category. This procedure helps create a balanced dataset for 

each base station usage categories. Following that, the 

newly generated dataset is used to process another round of 

classification. Similarly, classification is performed 100 

times for each target category, and the data that has 

correctly classified possibility exceeding 0.8 are selected 
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and averaged to extract patterns to each base station usage 

category. 

  

D. Optimal Classification Model 

 In the previous study by [12], the characteristics of indoor 

data traffic were invetigated using a decision tree model. In 

addition to this, since we need to extract patterns specific 

to each base station usage category in this paper, we 

conducted research to determine the optimal model that can 

improve classification accuracy. 5 ML models commly 

used in time series classification - Decision Tree, 

RandomForest, AdaBoost, GradientBoost and XGBoost - 

were considered for the study. Using the balanced dataset 

created based on base station usage categories, each model 

performed 100 times classification for each target category. 

The model that yield higher probabilities correctly 

classified will be selected as the optimal model for pattern 

extraction. 

 

III. PERFORMANCE EVALUATION 
 

To find the optimal ML model for pattern classification, 5 

different models were used to classify based on base station 

usage categories, and the classification results are shown in 

Table 1 and Table 2. 

 

 residential commercial 
shopping 

mall 
office 

Decision 

Tree 
0.389 0.681 0.666 0.714 

Random 

Forest 
0.24 0.798 0.728 0.881 

AdaBoost 0.385 0.657 0.657 0.724 

Gradient 

Boost 
0.371 0.694 0.657 0.751 

XGBoost 0.337 0.746 0.701 0.798 

Table 1. Classification result of original dataset 

 

 residential Commercial 
shopping 

mall 
office 

Decision 

Tree 
0.798 0.738 0.58 0.852 

Random 

Forest 
0.738 0.702 0.803 0.905 

AdaBoost 0.81 0.76 0.616 0.837 

Gradient 

Boost 
0.788 0.755 0.659 0.814 

XGBoost 0.796 0.714 0.74 0.869 

Table 2. Classification result of balanced dataset 

 

Table 1 presents the classification results when the dataset 

for base stsation usage categories is not balanced, and the 

performance metric used for evaluation is the probabilities 

correctly classified after 100 times classification. Table 2 

shows the classification results when the dataset is balanced, 

and the performance metric used for evaluation is the same 

as Table 1. 

From the classification results, it can be observed that in 

most cases, classification accuracy improves after 

balancing the dataset and referring to Table 2, 

RandomForest and XGBoost model outperform the other 3 

ML modles in terms of classification performance. 

However, it is becomes evident that the acccuracy of 

labeled information varies across different usage categories. 

Specifically, the accuracy is relatively lower for the 

residential and commercial categories, as these were 

labeled using Kakao Map. In contrast, the accuracy is 

notably higher for the shopping mall and office categories, 

as they were labeled based on information provided by the 

mobile carrier. Taking this into consideration, we have 

selected the RandomForest model as the optimal choice for 

pattern extraction due to its superior classification accuracy 

in the datasets labeled for shopping mall and office 

categories. 

The patterns extracted by RandomForest model are shown 

in Figure 5-9. 

 

 
Fig 5. Residential                Fig 6. Commercial 

 
Fig 7. Shopping Mall                  Fig 8. Office 

 
Fig 9. Outdoor 

 

Upon analyzing the patterns, distinctive characteristics for 

each base station usage category were observed. For the 

residential pattern, a consistent pattern throughout the week 

with peaks during moring and evening hours was identified. 

The shopping mall pattern showed increased data 

generation during weekends, with the highest volume 

around 12 o’clock. The office pattern displayed minmal 

traffic on weekends and significant variations during 

weekday commuting hours. Additionally, the commercial 

pattern exhibited similarities to the outdoor pattern, 

showing consistent weekly patterns and daily traffic 

similarities. According to this, it is expected that the 

outdoor data ratio in commercial areas will be significantly 

high.  

The results of estimating indoor ratios using the 

indoor/outdoor ratio estimation framework described in 

Section 2 are as follows. Firstly, we verify the estimated 

values for the base station data in office buildings, which 

were labeled based on information provided by the mobile 

carrier. The estimated indoor traffic ratio for the entire 

office dataset is 98%, signifying a remarkably high ratio. 

Notably, the weight γ associated with the Office pattern 
exhibited the highest magnitude across all datasets. The 

Coex base station data, which was also labeled based on 

information provided by the mobile carrier, exhibits an 

estimated indoor traffic ratio of 96% for the entire Coex 

dataset. The Coex dataset includes two types of data labeled 

as Office and Shopping Mall. It was observed that for all 

the data, except two, the weights closely matched the 

labeling information. The two excluded data points were 

labeled as Shopping Mall but showed high weights for the 

Office pattern. We plan to verify this with the mobile 

1112



carrier in the future. Finally, when estimating indoor traffic 

for the base station data in Gangnam Station, the indoor 

traffic ratio is approximated at 68%, closely aligning with 

the suggested indoor traffic ratio of 70-80% from a 

previous study [9]. Earlier, we emphasized the similarity 

between commercial and outdoor patterns. As a result, we 

can observe that the base station data labeled as commercial 

areas exhibit a low indoor traffic ratio and a high outdoor 

traffic ratio. Additionally, there are even data points with 

indoor traffic ratios close to 0%. 

There are some data points that require further verification 

of labeling information, but the estimation results show 

meaningful findings. The estimation results closely align 

with the previously suggested indoor traffic ratios, and the 

estimation values for base station data labeled as indoor 

traffic by the mobile carrier are close to 100%. This proves 

the effectiveness of the indoor/outdoor ratio estimation 

framework proposed in this paper. Therefore, we propose 

using the estimated indoor traffic ratio through this 

framework as a criteria for determining whether to target 

indoor or outdoor areas when additional base station 

installations are needed. 

 

IV. CONCLUSION 

 In this paper, we propose a framework, utilizing machine 

learning models, to analyze base station usage patterns and 

estimate the indoor/outdoor service ratio of base station 

data using the extracted patterns. Through the process of 

finding the optimal machine learning model for pattern 

extraction, we have demonstrated the suitability of the 

RandomForest model for classifying base station data 

according to usage categories. Furthermore, by using the 

extracted patterns to estimate the indoor/outdoor ratio for 

each base station data traffic, we have confirmed that the 

average indoor ratio of the entire Gangnam Station data 

closely approximates the indoor ratio range suggested in [9]. 

Therefore, we propose using the estimated indoor traffic 

ratio through this framework as a criteria for determining 

whether to target indoor or outdoor areas when additional 

base station installations are needed. 
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